The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 23
Back to Result List

Unraveling the functional relevance of the Ubiquitin-specific peptidase 22 for necroptotic cell death

  • Ubiquitination is regarded as one of the key post-translational modifications in nearly all biological processes, endowed with numerous layers of complexity. Deubiquitinating enzymes (DUBs) dynamically counterbalance ubiquitination events by deconjugating ubiquitin signals from substrates. Dysregulation of the ubiquitin code and its negative regulators drive various pathologies, such as neurological disorders and cancer. The DUB ubiquitin-specific peptidase 22 (USP22) is well-known for its essential role in the human Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, mediating the removal of monoubiquitination events from Histone 2A and 2B (H2A and -B), thereby regulating gene transcription. In cancer, USP22 was initially described as a part of an 11-gene expression signature profile, predicting tumor metastasis, reoccurrence and death after therapy in a wide range of tumor cells. However, novel roles for USP22 have emerged recently, accrediting USP22 essential roles in regulating tumor development as well as apoptotic cell death signaling. One of the hallmarks of cancer is the evasion of cell death, especially apoptosis, a form of programmed cell death (PCD). Necroptosis, a regulated form of necrosis, is regarded as an attractive therapeutic strategy to overcome apoptosis-resistance in tumor cells, although a profound understanding of the exact signaling cascade still remains elusive. Nevertheless, several ubiquitination and deubiquitination events are described in fine-tuning necroptotic signaling. In this study, we describe a novel role for USP22 in regulating necroptotic cell death signaling in human tumor cell lines. USP22 depletion significantly delayed TNFa/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFa-induced nuclear factor-kappa B (NF-KB) signaling or TNFa-mediated extrinsic apoptosis. Intriguingly, re-expression of USP22 wildtype in the USP22 knockout background could re-sensitize HT-29 cells to TBZ-induced necroptosis, whereas re-constitution with the catalytic inactive mutant USP22 Cys185Ser did not rescue susceptibility to TBZ-induced necroptosis, confirming the USP22 DUB-function a pivotal role in regulating necroptotic cell death. USP22 depletion facilitated ubiquitination and unexpectedly also phosphorylation of Receptor-interacting protein kinase 3 (RIPK3) during necroptosis induction, as shown by Tandem Ubiquitin Binding Entities (TUBE) pulldowns and in vivo (de)ubiquitination immunoprecipitations. To substantiate our findings, we performed mass-spectrometric ubiquitin remnant profiling and identified the three novel USP22-regulated RIPK3 ubiquitination sites Lysine (K) 42, K351 and K518 upon TBZ-induced necroptosis. Further assessment of these ubiquitination sites unraveled, that mutation of K518 in RIPK3 reduced necroptosis-associated RIPK3 ubiquitination and additionally affected RIPK3 phosphorylation upon necroptosis induction. At the same time, genetic knock-in of RIPK3 K518R sensitizes tumor cells to TNFa-induced necroptotic cell death and amplified necrosome formation. In summary we identified USP22 as a new regulator of TBZ-induced necroptosis in various human tumor cell lines and further unraveled the distinctive role of DUBs and (de)ubiquitination events in controlling programmed cell death signaling.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jens RödigORCiDGND
URN:urn:nbn:de:hebis:30:3-609257
DOI:https://doi.org/10.21248/gups.60925
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Simone FuldaORCiDGND
Advisor:Simone Fulda, Volker Dötsch
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/05/02
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/04/16
Release Date:2021/07/08
Tag:Ubiquitin
Page Number:140
HeBIS-PPN:481429662
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht