The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 15
Back to Result List

Simulation, Optimierung und Realisierung quasioptischer Scansysteme für aktive THz-Kameras

  • This thesis deals with the simulation, optimization and realization of quasi-optical scanning systems for active THz cameras. Active THz cameras are sensitive in the THz regime of the electromagnetic spectrum and are suitable for the detection of metal objects such as weapons behind clothing or fabrics (maybe for security applications) or material investigation. An advantage of active THz-systems is the possibility to measure the phase of the THz-radiation and thus to reconstruct the surface topography of the objects under test. Due to the coherent illumination and the required system parameters (like image field size, working distance and lateral resolution) the optical systems (in the THz region often called quasi-optical systems) must be optimized. Specifically, the active illumination systems require highly optimized quasioptical systems to achieve a good image quality. Since currently no suitable multi-pixel detectors are available, the object has to be scanned in one or two dimensions in order to cover a full field of view. This further reinforces the occurring aberrations. The dissertation covers, alongside the underlying theory, the simulation, optimisation and realisation of three different active THz systems. The subdivision of the chapters is as follows: Chapter 1 deals with a motivation. Chapter 2 develops the underlying theory and it is demonstrated that the geometrical optics is an adequate and powerful description of the image field optimization. It also addresses the developed analytic on-axis and the off-axis image field optimization routine. Chapter 3, 4 and 5 are about the basis of various active THz cameras, each presented a major system aspect. Chapter 3 shows how active THz-cameras with very high system dynamics range can be realised. Within this chapter it could although be demonstrated how very high depth resolution can be achieved due to the coherent and active illumination and how high refresh rate can be implemented. Chapter 4 shows how absolute distance data of the objects under test can be obtained. Therefore it is possible to reconstruct the entire object topography up to a fraction of the wavelength. Chapter 5 shows how off-axis quasi-optical systems must be optimized. It is also shown how the illumination geometry of the active THz systems must be changed to allow for real-time frame rates. The developed widened multi-directional lighting approach also fixes the still existing problem of phase ambiguity of the single phase measurement. Within this chapter, the world’s first active real-time camera with very high frame rates around 10 Hz is presented. This could be only realized with the highly optimised quasioptical system and the multi-directional lighting approach. The paper concludes with a summary and an outlook for future work. Within the outlook some results regarding the simulation of synthetic aperture radar systems and metamaterials are shown.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Am WegGND
URN:urn:nbn:de:hebis:30:3-228773
Referee:Hartmut RoskosORCiDGND, Viktor KrozerORCiDGND, Dirk-Hermann RischkeORCiDGND, Wolf AßmusGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/10/07
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/10/11
Release Date:2011/10/07
Page Number:225
HeBIS-PPN:276791339
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht