Aufbau eines cw-, Puls-EPR-Spektrometers bei 180 GHz

  • Über lange Zeit wurden in der EPR-Spektroskopie hauptsächlich cw-Experimente bei einer Mikrowellenfrequenz von 9 GHz durchgeführt. In den letzten 10 bis 15 Jahren aber haben zwei verschiedene Entwicklungen immer stärkere Verbreitung gefunden. Dies sind zum einen die Verwendung von immer höheren Magnetfeldern und damit Mikrowellenfrequenzen, und zum anderen die Anwendung von Puls-Experimenten. Hochfeld-EPR bietet zwei wesentliche Vorteile gegenüber den klassisch verwendeten Magnetfeldstärken. Dies ist einerseits die erhöhte spektrale Auflösung bei Systemen mit anisotropen g-Tensoren, andererseits die höhere absolute Empfindlichkeit in Verbindung mit einem geringeren Probenvolumen. Puls-Experimente andererseits bieten die Möglichkeit, Informationen zu gewinnen, die mit cw-EPR Spektroskopie nicht oder nur sehr schwer zu erhalten sind. Die Kombination dieser beiden Weiterentwicklungen der EPR-Spektroskopie eröffnet die Möglichkeit, mittels mehrdimensionaler Spektroskopie detaillierte orientierungsabhängige Informationen zu erhalten. Im Rahmen dieser Arbeit wurde ein Puls EPR-Spektrometer aufgebaut, welches bei einer Mikrowellenfrequenz von 180 GHz und einem statischen Magnetfeld von 6,4 T arbeitet. 180 GHz ist derzeit weltweit die höchste Mikrowellenfrequenz, bei der routinemäßig ein zylindrischer Hohlraumresonator verwendet wird und bei der Puls EPR-Experimente durchgeführt werden. Da bei solchen Mikrowellenfrequenzen einige benötigte Bauteile nicht mehr in konventioneller Bauweise erhältlich sind, wurden quasioptische Elemente verwendet, um einen Zirkulator aufzubauen. Der Transport der Mikrowellenstrahlung von der Quelle zur Probe und von dort zurück zur Detektion geschieht mittels überdimensionierter Hohlleiter, um die Verluste zu minimieren. Ein zylindrischer Hohlraumresonator wird in einer fundamentalen Mode betrieben, um am Probenort die für Puls-Experimente notwendige Mikrowellenleistung zu erzeugen. Mit der erreichten Mikrowellenleistung und der Ankopplung des Resonators werden Pulslängen von ca. 60 bis 80 ns für Systeme mit S=1/2 erzielt. Die Eigenschaften des aufgebauten Spektrometers wie die Empfindlichkeit oder die Totzeit im Pulsbetrieb werden ausführlich dargestellt und diskutiert. Ebenso werden die Eigenschaften der implementierten Spektrometersteuerung, insbesondere im Hinblick auf das Zeitverhalten bei Puls-Experimenten, dargestellt und diskutiert. Im letzten Teil der Arbeit wird ein ausführliches Anwendungsbeispiel für Hochefeld-EPR diskutiert. Das Ras-Protein spielt eine wichtige Rolle in der intrazellulären Signalweiterleitung und reguliert solche Prozesse wie Zellwachstum, Differentiation und Apoptose. In ca. 30 % aller menschlicher Tumore werden Mutationen dieses Proteins gefunden, was die wichtige Rolle dieses Proteins demonstriert. Trotz dieser wichtigen Funktion ist der genaue Mechanismus des Aktivierungszykluses noch nicht im Detail aufgeklärt worden. Mittels cw-EPR Spektroskopie wurden die GDP-gebundenen inaktiven Proteinkomplexe verschiedener Mutanten untersucht. Durch Messungen in H217O-angereichertem Wasser konnte gezeigt werden, dass bei Raumtemperatur beim Wildtyp ein Wasserligand weniger am aktiven Zentrum der Proteinkomplexe vorliegt als bei einer onkogenen Mutante. Dieses Ergebnis widerspricht den bisher durch verschiedene Röntgenstrukturuntersuchungen gewonnen Erkenntnissen. Es wird ausführlich darüber diskutiert, dass diese unterschiedlichen Ergebnisse vermutlich auf Kristallbildungseffekte zurückzuführen sind.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Brügmann
URN:urn:nbn:de:hebis:30-0000003338
Referee:Thomas PrisnerORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/12/15
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/08/01
Release Date:2003/12/15
HeBIS-PPN:116528435
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht