Expression, Zuordnung, Struktur und Untersuchungen zum Elektronentransportmechanismus des Adrenodoxins; Optimierung der Expression und Aufreinigung des Elektronentransportproteins Ferredoxin NADP-plus-Reduktase

  • Der Ein-Elektron Transporter Adrenodoxin spielt in der Steroidhormonbiosynthese eine entscheidende Rolle. Bislang konnte der Elektronentransportmechanismus zwischen der Adrenodoxin-Reduktase und dem Cytochrom P450 mittels Adrenodoxin nicht eindeutig nachgewiesen werden. Um die molekularen Wechselwirkungen besser verstehen zu können wurden in der vorliegenden Arbeit strukturelle Untersuchungen am Rinderadrenodoxin durchgeführt. Nachdem es bereits 1998 gelang die Struktur des oxidierten Zustands des Adrenodoxins aufzuklären [Müller et al. 1998], sollte die Struktur des reduzierten Zustands Aufschluss über mögliche redoxbedingte konformationelle Änderungen geben. Die Strukturaufklärung mittels NMR erfordert hohe Expressionsausbeuten und effektive Aufreinigungsstrategien des rekombinant hergestellten Proteins. Deshalb wurde zunächst eine Steigerung der Expression von löslichem Adrenodoxin in E.coli angestrebt. In Minimalmedium lieferte die Expression unter Zusatz von 2,5g Glycerin und 1g Glucose optimale Ergebnisse. So konnte nach Optimierung der Aufreinigungsabfolge aus einem Liter M9-Medium bis zu 50 mg homogenes Protein isoliert werden. Nach Optimierung der Expressionsbedingungen und der Aufreinigungsstrategie konnte das Adrenodoxin mit den NMR aktiven Isotopen 15N sowie 13C angereichert werden. Die Reduktion des Adrenodoxins erfolgte durch Zusatz von Natriumdithionit unter strikt anaeroben Bedingungen. Die strukturelle Untersuchung mittels NMR setzt eine Zuordnung der Proteinresonanzen voraus. Diese erfolgte unter Verwendung verschiedener Tripleresonanzexperimente. Eine Zuordnung war aufgrund des stark ausgeprägten Paramagnetismus nur für solche Reste möglich, die sich mindestens 8 Å vom [2Fe-2S]-Cluster des Adrenodoxins entfernt befinden. Trotzdem konnten wichtige Regionen, die sich außerhalb des Einflussbereichs des [2Fe-2S]- Clusters befinden, zugeordnet und mit dem oxidierten Zustand verglichen werden. Aus den 15N-NOESY-HSQC und 13C-NOESY-HSQC-Spektren wurden für den reduzierten Zustand unter Zuhilfenahme des Programms NMR2st 1300 effektiv abstandsbeschränkende NOESignale eindeutig zugeordnet. Nach Minimierung der Zielfunktion wurden im letzten Schritt 50 Strukturen mit dem Strukturkalkulationsprogramm DYANA berechnet. Die 20 Strukturen mit den besten Targetfunkionen wurden als Strukturensemble dargestellt. Für das Proteinrückrat beträgt der RMSD 2,34 Å. Anhand der chemischen Verschiebungsänderungen konnten erste Unterschiede zwischen oxidierten und reduzierten Zustand des Adrenodoxins festgestellt werden. Besonders markant sind diese Veränderungen im Bereich des C-Terminus und des Loops 80-86. Änderungen konnten auch im "Chemical Shift Index" und beim Vergleich der NOE-Konnektivitäten beider Redoxzustände beobachtet werden. Gerade für die Aminosäurereste Asp76 und Asp79, die für die Wechselwirkung zu den Redoxpartnern essentiell sind, konnten Veränderungen im Aufspaltungsmuster der "NOE-Pattern" nachgewiesen werden, was auf konformationelle Änderungen im Bereich der Wechselwirkungsdomäne hindeutet. Der Vergleich der beiden Tertiärstrukturen lieferte weitere Indizien dafür, dass der C-Terminus redoxbedingte konformationelle Änderungen erfährt. Während des Erstellens dieser Arbeit konnte eine US-amerikanische Gruppe durch Zufall die Existenz eines Adrenodoxin (oxidiert) Dimers bei physiologisch relevanten Konzentrationen nachweisen [Pikuleva et al. 2000]. Bei der Dimerisierung spielt der C-Terminus eine entscheidende Rolle. Zwei intermolekulare Wasserstoffbrücken bilden sich zwischen CTerminus und Protein des jeweils anderen Partners aus. Redoxbedingte konformationelle Änderungen im Bereich des C-Terminus sollten die Auflösung des Dimers begünstigen. Um diese Vermutung zu bestätigen wurden Cross-Linking Experimente mit dem reduzierten und oxidierten Zustand des Adrenodoxins durchgeführt. Die Ergebnisse bestätigten die Annahme, dass sich das Adrenodoxin Dimer nach Reduktion auflöst. Außerdem konnte anhand der voll funktionsfähigen C-terminal verkürzten Mutante Adx(4-108) die tragende Rolle des CTerminus bei der Dimerbildung bewiesen werden. Aus den experimentell erhaltenen Daten wurde ein neuer Elektronentransportmechanismus postuliert, der sowohl Adrenodoxin Dimere als auch Adrenodoxin Monomere als Elektronentransporter annimmt [Beilke et al. 2002]. Die streng kontrollierte Steroidhormonbiosynthese wird durch den Einsatz von Adrenodoxin Dimeren beschleunigt und durch die redoxbedingte Auflösung der Dimere optimert. Die redoxbedingte Auflösung eines Dimers ist in der Biochemie einzigartig und kann zum Verständnis molekularer Wechselwirkungen beitragen. Für die gesamte Gruppe der vertebraten Ferredoxine sind aufgrund der Struktur- und Sequenzhomologie ähnliche Ergebnisse zu erwarten. Im zweiten Teil der Arbeit sollte die Ferredoxin-NADP -Reduktase (FNR) für strukturelle Untersuchungen mittels NMR zugänglich gemacht werden. Durch Verwendung von bakteriellen Expressionssystemen, insbesondere dem pQE30-Expressionssystem, konnte der Anteil an löslichem Protein im Vergleich zum Ursprungssystem um den Faktor 12 erhöht werden. Dabei führten möglichst niedrige Expressionstemperaturen und IPTG Konzentrationen zu den höchsten Proteinausbeuten. Ein verbessertes Isolationsverfahren wurde etabliert und ermöglicht die Darstellung von bis zu 90 mg FNR aus einem Liter LB-Medium. Eine Verlängerung der Expressionsdauer, hervorgerufen durch das Wachstum in M9-Medium und in D2O, verringerte den Anteil an vollständig intaktem Protein, weshalb auf eine kostspielige Proteinpräparation in dreifach angereicherten Minimalmedium verzichtet wurde.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dirk Beilke
URN:urn:nbn:de:hebis:30-0000002451
Referee:Heinrich Rüterjans
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/08/07
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/10/30
Release Date:2003/08/07
HeBIS-PPN:113007566
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht