Der Einfluss von turbulenten Strömungen auf die Photodissoziation von CO in interstellaren Wolken
- Seit 1988 ist bekannt, dass die Photodissoziation von COMolekülen durch Linienabsorption von UVPhotonen stattfindet. Wie jede Linienabsorption ist damit auch die Photodissoziation von CO abhängig von Geschwindigkeitsfeldern innerhalb des absorbierenden Mediums. DopplerVerschiebung kann die Absorption in einen Frequenzbereich verschieben, in dem sich die lokale Intensität von der Intensität in der Linienmitte wesentlich unterscheidet. Jede Untersuchung, die sich mit der Bildung und Vernichtung von COMolekülen am Rand interstellarer Wolken beschäftigt, muss diese turbulenten Geschwindigkeitsfelder berücksichtigen. Da die Existenz von turbulenten Strömungen in interstellaren Molekülwolken unbestritten ist, wird in Untersuchungen üblicherweise der Dopplerparameter der Gaußschen Profilfunktion um eine Turbulenzgeschwindigkeit erweitert. Diese mikroturbulente Näherung ist die simpelste Möglichkeit zur Berücksichtigung von Turbulenz. In vorangegangenen Arbeiten (Albrecht, M.A., Kegel, W.H. (1987)), (Kegel, W.H., Piehler, G., Albrecht, M.A. (1993)), (Piehler, G., Kegel, W.H. (1995)) ist gezeigt worden, dass die Berücksichtigung eines turbulenten Geschwindigkeitsfeldes mit endlicher Korrelationslänge (Mesoturbulenz) jedoch wesentlich dazu beitragen kann, realistischere Linienprofile zu erhalten. Während in den letzten Jahren einiger Aufwand betrieben wurde, die Berechnung der chemischen und thermischen Struktur einer Molekülwolke zu verfeinern, ist der Modellierung des zugrundegelegten Strahlungstransports weniger Aufmerksamkeit gewidmet worden. Die Ergebnisse unserer Rechnungen zeigen, dass die Berück sichtigung eines mesoturbulenten Strahlungstransports den Verlauf der COHäufigkeit entlang des Sehstrahls wesentlich beeinflussen kann. Zusammengefasst haben wir folgende Ergebnisse erhalten: - Rechnungen mit einem EinzellinienModell zeigen den großen Einfluss von Korrelationslänge und Turbulenzgeschwindigkeit auf den Verlauf der Photodissoziationsrate und damit auch auf die resultierende COHäufigkeit. - Bei Mesoturbulenz werden die absorptionsrelevanten Linien schneller optisch dick als bei reiner Mikroturbulenz. Dadurch kann sich eine stabile Zone großer CODichte in Tiefen bilden, von denen bisher angenommen wurde, sie würden eine zu große UVIntensität aufweisen. - Rechnungen, die das volle UVSpektrum berücksichtigen, zeigen eine geringere Sensitivität der COHäufigkeit gegenüber Variationen der Turbulenzparameter als solche mit nur einer Linie. Trotzdem haben Korrelationslänge und Turbulenzgeschwindigkeit starken Einfluss auf die Tiefe, ab der eine stabile COHäufigkeit erreicht wird. - Im Vergleich zu Rechnungen mit einer parametrisierten Photodissoziationswahrscheinlichkeit fällt im mesoturbulenten Fall z CO wesentlich schneller ab. Das bedeutet, dass in größeren Tiefen der Wolke die Werte für z CO um einige Größenordnungen voneinander abweichen können. Für Größe und Isotopenverhältnis des Wolkenmodells kann das zu einer signifikanten Überschätzung der wahren Werte führen. - Das zugrundegelegte Modell der chemischen Reaktionen weist eine hohe Stabilität gegenüber Veränderungen der Turbulenzparameter auf. Auch wenn die COHäufigkeit davon relativ stark betroffen ist, wirken sich diese Veränderungen nur sehr langsam auf die chemische Gesamtstruktur der Wolke aus. - Die Anwendung unserer Ergebnisse auf Beobachtungen von NGC 2024 zeigen, dass sich die Werte, die man für Dichte und Größe der Region aus den Modellen ermittelt, stark von dem zugrundegelegten Strahlungstransportmodell abhängen. Folgerungen, die aufgrund einer zu einfachen Modellierung gemacht werden, sind somit mit einiger Vorsicht zu betrachten. Es zeigt sich, dass der numerische Aufwand, stochastische Strahlungstransportmodelle zu rechnen, durchaus gerechtfertigt ist. Möchte man die Bildung von CO Molekülen am Rand einer interstellaren Molekülwolke genauer verstehen, muss eine endliche Korrelationslänge berücksichtigt werden. Es macht wenig Sinn, immer detailliertere chemische Modelle zu entwickeln und die wichtigen Effekte mesoturbulenten Strahlungstransports zu vernachlässigen.