The molecular basis of V2 vasopressin receptor-G Protein coupling selectivity
- GProteingekoppelte Rezeptoren (GPCRs) stellen eine der größten in der Natur vorkommenden Proteinfamilien dar (Watson and Arkinstall, 1994). GPCRs sind plasmamembranständige Proteine, die mit heterotrimären GProteinen interagieren und eine Vielzahl an Signaltransduktionswegen aktivieren. Trotz der strukturellen Vielfalt der an GPCRs angreifenden Liganden stimulieren die meisten GPCRs nur eine begrenzte Anzahl strukturell sehr ähnlicher GProteine (Hedin et al., 1993; Conklin and Bourne, 1993). Die Aufklärung der molekularen Mechanismen, die dieser Rezeptor/GProteinKopplungsselektivität zugrunde liegen, ist von fundamentaler Wichtigkeit für das Verständnis zellulärer Signaltransduktion. Ausführliche StrukturFunktionsanalysen verschiedener Neurotransmitter rezeptoren, einschließlich der Muskarinrezeptoren (Wess, 1996) und adrenergen Rezeptoren (Dohlman et al., 1991; Savarese and Fraser, 1992; Strader et al., 1994), haben einen beträchtlichen Beitrag zur Identifizierung der strukturellen Elemente, die für die GProteinKopplungsselektivität dieser Rezeptorgruppe verantwortlich sind, geleistet. Im Gegensatz dazu ist bisher noch weitgehend ungeklärt, welche molekularen Mechanismen der Kopplungsselektivität von GPCRs, die durch Peptidliganden aktiviert werden, zugrunde liegen. Das Ziel dieser Arbeit war daher, molekulare Grundlagen der GProtein Kopplungsselektivität von PeptidGPCRs näher zu untersuchen und aufzuklären. Die Vasopressinrezeptorfamilie unterscheidet sich von nahezu allen anderen PeptidGPCRs darin, daß die einzelnen Rezeptorsubtypen deutlich unterschiedliche GProtein Kopplungspräferenzen aufweisen. Die V1a und V1bVasopressinrezeptoren stimulieren selektiv GProteine der Gq/11 Familie, was zur Aktivierung von PhospholipaseCbeta-Isomeren führt. Im Gegensatz dazu koppelt der V2Vasopressinrezeptor vornehmlich an das GProtein G s , was in einem Anstieg an intrazellulärem cAMP resultiert. Daher stellen die Vasopressinrezeptorsubtypen ein attraktives Modellsystem zum Studium der Peptid GPCRRezeptordomänen, die für die selektive GProteinAktivierung verantwortlich sind, dar. Als Modellsystem für diese Arbeit diente primär der V2Vasopressinrezeptor. Molekulare Faktoren, die die Gs Kopplungsselektivität des V2 Vasopressinrezeptors bestimmen. Eine frühere Studie zeigte, daß die Gegenwart der V1aRezeptorsequenz in der zweiten intrazellulären (i2) Schleife notwendig war, um den Wildtyp V1a und V1a/V2 Rezeptorchimären effizient an Gq/11 Proteine zu koppeln (Liu and Wess, 1996). Effiziente Interaktionen zwischen Wildtyp V2 oder V1a/V2Rezeptorchimären und dem GProtein G s waren hingegen hauptsächlich von V2Rezeptorsequenzen in der dritten intrazellulären (i3) Schleife abhängig. Um die molekularen Grundlagen der Gs Kopplungsselektivität des V2Rezeptors näher zu untersuchen, wurden zunächst klassische Mutagenesetechniken (zielgerichtete Mutagenese'') angewandt. Definierte V2Rezeptorsegmente (oder einzelne Aminosäuren) wurden in den V1aRezeptor transferiert, und die resultierenden HybridVasopressinrezeptoren wurden anschließend in funktionellen Studien auf ihre Fähigkeit, hormonabhängig intrazelluläre cAMP Konzentrationen zu steigern (G s vermittelt), getestet. Diese Strategie schien besonders geeignet, da die Aktivierung des V1aWildtyprezeptors nahezu keine Auswirkungen auf intrazelluläre cAMPSpiegel hat. Wie bereits erwähnt, ist die effiziente Kopplung des V2Rezeptors an das Gs Protein vornehmlich von V2Rezeptorsequenzen in der i3Schleife abhängig (Liu and Wess, 1996). Eine V1aRezeptormutante, deren i3Schleife durch die homologe V2 Rezeptorsequenz ersetzt worden war, war in der Lage, effizient mit Gs zu interagieren. Die Fähigkeit dieser Rezeptormutante, Gs zu aktivieren, war jedoch im Vergleich zum V2Wildtyprezeptor vermindert. Diese Beobachtung ließ die Vermutung zu, daß noch andere intrazelluläre V2Rezeptordomänen zur optimalen Gs Kopplung notwendig sind. Daher wurde zunächst eine Reihe von V1a/V2Rezeptorchimären erzeugt, die den Beitrag der zweiten (i2) und vierten intrazellulären (i4) Rezeptordomäne zur V2 Rezeptor/G s Kopplungsselektivität klären sollten. Funktionelle Untersuchungen der resultierenden HybridRezeptormutanten in Säugetierzellen (COS7) zeigten, daß ein kurzes Segment im Nterminalen Abschnitt der i4Domäne einen deutlichen Beitrag zur V2Rezeptor/G s Kopplungsselektivität leistet. Eine V1aRezeptormutante, welche in der i3Schleife und dem Nterminalen Segment der i4Domäne (Ni4) homologe V2 Rezeptorsequenzen enthielt, zeigte ein funktionelles Profil (EC 50 und E max ), welches mit dem V2Wildtyprezeptor nahezu deckungsgleich war. Anschließend wurden strukturelle Elemente innerhalb der i3Schleife näher untersucht. Funktionelle Analysen zeigten, daß der Nterminale Abschnitt der i3Schleife weitgehend das GProteinKopplungsprofil des V2Rezeptors bestimmt. Eine Reihe von V1aRezeptormutanten wurde erzeugt, in denen kurze Segmente des Nterminalen Bereichs der i3Schleife mit der entsprechenden V2Rezeptorsequenz ausgetauscht wurden. Funktionelle Untersuchungen ergaben, daß ein Aminosäurepaar (Gln225, Val226) und triplet (Phe229, Arg 230, Glu231) am Beginn der i3Schleife des V2 Rezeptors für die effiziente Aktivierung von Gs von entscheidender Bedeutung sind. Durch Punktmutationen in diesem Bereich wurden zwei polare Aminosäuren, Gln225 und Glu231, identifiziert, die für die effiziente V2Rezeptor/G s Interaktion essentiell sind. Untersuchungen mit anderen GPCRKlassen (Dohlman et al., 1991; Savarese and Fraser, 1992; Strader et al., 1994; Wess, 1996) haben ebenfalls gezeigt, daß dem N Terminus der i3Schleife eine besondere Rolle im Rezeptor/GProteinKopplungsprozeß zukommt. In diesen Studien wird berichtet, daß vornehmlich hydrophobe und ungeladene Aminosäuren Schlüsselrollen in der rezeptorvermittelten GProteinAktivierung einnehmen. Die hier beschriebenen Untersuchungen hingegen ergaben, daß zwei polare/geladene Aminosäuren, Gln225 und Glu231, für die V2Rezeptor/G s Kopplung von besonderer Wichtigkeit sind und zeigen daher, daß die Rezeptor/GProtein Kopplungsselektivität nicht auf ausschließlich hydrophoben Wechselwirkungen beruht. Desweiteren konnte beobachtet werden, daß die Länge der i3Schleife die Effizienz, mit der der V2Rezeptor GProteine der Gs Klasse zu aktivieren vermag, beeinflußen kann. Die V1a und V2Rezeptoren weisen unterschiedlich lange i3 Schleifen auf (die i3Schleife des V2Rezeptors ist 13 Aminosäuren kürzer als die des V1aRezeptors). Eine V1aRezeptormutante, deren Nterminaler Abschnitt der i3 Schleife durch homologe V2Rezeptorsequenz ersetzt wurde, konnte deutlich effizienter mit Gs interagieren, wenn der mittlere Abschnitt der i3Schleife um elf Aminosäuren verkürzt wurde. Gleichermaßen konnte die effiziente Kopplung bestimmter V1a/V2Hybridrezeptoren an Gs durch Einfügen von elf Aminosäuren in den zentralen Bereich der i3Schleife deutlich gehemmt werden. Diese Ergebnisse legen nahe, daß der zentrale Bereich der i3Schleife die Rezeptor/GProteinKopplungsselektivität beeinflussen kann, obgleich diese Rezeptordomäne vermutlich nicht direkt mit dem GProtein interagiert. Es ist denkbar, daß die Länge der i3Schleife den Zugang des GProteins zu funktionell wichtigen Rezeptordomänen, z.B. Aminosäuren im Bereich der fünften Transmembrandomäne (TM V) und der i3Schleife, reguliert. Identifizierung einzelner Aminosäuresubstitutionen und Aminosäuredeletionen, die die GProteinKopplungsselektivität des V2Rezeptors beeinflussen: Einsatz von Hefeexpressionstechnologie und zufallsgerichteter Mutagenese (random mutagenesis'') Im zweiten Teil dieser Arbeit wurden Hefe(Saccharomyces cerevisiae) Expressionstechnologien angewandt, um StrukturFunktionsanalysen des V2Rezeptors zu erleichtern und Beschränkungen klassischer Mutagenesetechniken zu überwinden. Der V2Wildtyprezeptor und verschiedene GProteinchimären aus Hefe und SäugetierGalpha Untereinheiten wurden in genetisch modifizierten Hefelinien, deren Zellwachstum von effizienter Rezeptor/GProteinKopplung abhängig war, coexprimiert. In diesem System aktiviert produktive Rezeptor/GProteinKopplung den HefeMAPKinase/Pheromon Signaltransduktionsweg. Dies führt zur Transkription des FUS1HIS3Reportergens und somit zur Expression von His3Protein, was den Histidinauxotrophen (his3) Hefelinien ermöglicht, in histidinfreiem Medium zu wachsen (Pausch et al., 1998). Es konnte gezeigt werden, daß heterolog exprimierte V2Rezeptoren weder mit der HefeGProtein alphaUntereinheit (Gpa1p) noch mit einem mutierten Gpa1Protein, in dem die Cterminalen fünf Aminosäuren gegen homologe Galpha q Sequenz ausgetauscht worden waren (Gq5), effizient interagierten. Im Gegensatz dazu erwies sich die Interaktion zwischen dem V2 Rezeptor und einem mutierten Gpa1Protein, dessen Cterminale fünf Aminosäuren die homologe Galpha s Sequenz enthielten (Gs5), als hocheffizient. Diese Beobachtungen zeigten, daß der V2Rezeptor im Hefesystem sein physiologisches Kopplungsprofil beibehielt. Zur weiteren Validierung des Hefeexpressionssystems wurden die G q/11 gekoppelten M 1 , M 3 und M 5 Muskarinrezeptoren und verschiedene mutierte Vasopressin und M 3 Muskarinrezeptoren mit veränderten funktionellen Eigenschaften heterolog in Hefe exprimiert. Funktionelle Analysen zeigten, daß die Wildtyprezeptoren und die verschiedenen Rezeptormutanten in Hefe und Säugetierzellen ähnliche Phänotypen aufwiesen. Um zu untersuchen, weshalb der V2Rezeptor nicht effizient an GProteine der Gq/11 Familie koppelt, sollte der in Hefe exprimierte V2Rezeptor zufallsgerichteter Mutagenese (random mutagenesis'') unterzogen und Mutanten mit veränderten G ProteinKopplungeigenschaften isoliert werden. Im speziellen wurde die i2Schleife untersucht, da eine frühere Studie gezeigt hatte, daß vornehmlich die i2Schleife des V1a Rezeptors für die V1aRezeptor/G q/11 Kopplungsselektivität verantwortlich ist (Liu and Wess, 1996). Mittels zufallsgerichteter Mutagenesetechnik wurde in Hefe eine Bibliothek von V2Rezeptormutanten erzeugt, deren i2Schleife Mutationen mit einer Mutageneserate von ungefähr 10% (auf der Nukleotidebene) enthielt. Anschließend wurden in einem Selektionsverfahren (screen'') 30 000 V2Rezeptormutanten auf ihre Fähigkeit, mit Gq5 zu interagieren, überprüft. Es konnten vier V2Rezeptormutanten isoliert werden, welche effizient an Gq5 (jedoch nicht an HefeGpa1p) koppelten. Funktionelle Untersuchungen mit diesen und anderen mittels zielgerichteter Mutagenese erzeugter V2Rezeptormutanten zeigten, daß die Substitution einer einzigen Aminosäure (Met145) im zentralen Bereich der i2Schleife beträchtliche Auswirkungen auf die Rezeptor/GProteinKopplungsselektivität hatte. Die Fähigkeit des V2Rezeptors, produktiv mit Gq5 zu interagieren, war von der Anwesenheit relativ großer, hydrophober Aminosäuren wie Leucin und Tryptophan abhängig. Austausch von Met145 mit kleinen Aminosäuren wie Glycin oder Alanin erlaubte dem V2Rezeptor nicht, Gq5 zu aktivieren. Interessanterweise interagierten alle V2Rezeptormutanten, die eine Met145 Punktmutation aufwiesen, mit Gs5 ähnlich effizient wie der V2Wildtyprezeptor. Die Unfähigkeit der V2(Met145Gly) und V2(Met145Ala)Rezeptoren, Gq5 zu aktivieren, beruht daher nicht auf einem Faltungsdefizit. Gleichermaßen basierte die Fähigkeit der V2(Met145Trp) und V2(Met145Leu)Rezeptoren, produktiv an Gq5 zu koppeln, nicht auf der Überexpression von Rezeptorprotein. Diese Ergebnisse zeigen, daß die chemische Eigenschaft der Aminosäure an Position 145 die V2Rezeptor/GProtein Kopplungsselektivität reguliert. Interessanterweise befindet sich in allen anderen Subtypen der Vasopressin/OxytocinRezeptorfamilie (V1a, V1b, und Oxytocin Rezeptoren), welche selektiv an GProteine der G q/11 Klasse gekoppelt sind, ein Leucin an der Stelle, die zu Met145 (V2Rezeptorsequenz) homolog ist. Eine der vier ursprünglich isolierten V2Rezeptormutanten enthielt neben verschiedenen Punktmutationen eine Deletion in Position Met145. In detaillierteren zielgerichteten MutageneseStudien wurden zwei V2Rezeptormutanten erzeugt, die alle drei GProteine (Gq5, Gs5 und Gpa1p) aktivieren konnten. Um zu untersuchen, ob ein generelles Verkürzen der i2Schleife um eine Aminosäure der Grund für die beobachtete Rezeptor/GProteinPromiskuität ist, wurden verschiedene V2Rezeptormutanten erzeugt, in denen einzelne Aminosäuren unmittelbar N und Cterminal von Met145 deletiert worden waren. Funktionelle Untersuchungen ergaben, daß die Deletion einzelner Aminosäuren Nterminal von Met145 (Ile141delta, Cys142delta, Arg143delta oder Pro144delta) in V2Rezeptormutanten resultierte, die nicht mit GProteinen interagieren konnten. RadioligandBindungsstudien zeigten, daß diese V2Rezeptormutanten keine V2Liganden binden konnten, was darauf schließen läßt, daß Deletionen einzelner Aminosäuren Nterminal von Met145 zu mißgefalteten Rezeptoren führen. Die Aminosäuren Ile141Pro144 befinden sich am Beginn der i2Schleife, unmittelbar neben der alphahelikalen zytoplasmatischen Verlängerung der dritten Transmembrandomäne (TM III) in der Nähe des hochkonservierten DRY(H)Motivs. Es ist denkbar, daß Aminosäuren innerhalb des Ile141Pro144Segments mit den zytoplasmatischen Abschnitten von TM III und/oder TM V interagieren und diese Wechselwirkungen die Rezeptorstruktur stabilisieren. Im Gegensatz dazu hatten Deletionen unmittelbar C terminal von Met145 (Leu146delta, Ala147delta, Tyr148delta oder Arg149delta) keinerlei Auswirkungen auf die Funktion des V2Rezeptors. Diese Aminosäuren befinden sich im zentralen Bereich der i2Schleife, der nicht mit den transmembranären Domänen des Rezeptorproteins interagieren kann.