Untersuchungen zum molekularen Mechanismus des neuronalen Glutamattransporters EAAC 1
- In dieser Arbeit wurde der neuronale Glutamattransporter EAAC1 (Excitatory Amino Acid Carrier 1), kloniert aus Rattenretina, in HEK (Human Embryonic Kidney) Zellen transient exprimiert und mit Hilfe der patch clampTechnik elektrophysiologisch untersucht. Der Glutamattransport ist gekoppelt an den Kotransport von drei Natriumionen und einem Proton und den Gegentransport von einem Kaliumion. Damit werden pro Transportzyklus zwei positive Nettoladungen in die Zelle verschoben. Zusätzlich zum Glutamattransport verfügt der EAAC1 über eine Glutamatinduzierte Anionenleitfähigkeit, die nicht thermodynamisch an den Glutamattransport gekoppelt ist und besonders deutlich bei chaotropen Anionen (wie SCN ) in Erscheinung tritt. Eine weitere Funktion des Transporters ist seine Glutamatunabhängige Leckleitfähigkeit. Mit Hilfe von Ganzzellableitungen unter definierten ionalen extra und intrazellulären Bedingungen und bestimmtem Haltepotenzial erfolgte die Charakterisierung des Glutamattransporters von der extrazellulären Seite. Eine hohe Überexpression von EAAC1 in den HEKZellen, mit einer durchschnittlichen Dichte von # 4#10 3 Transporter pro µm 2 Zellmembran, erlaubte zudem die Beschreibung des Transporters von der intrazellulären Seite, durch Messungen am insideout patch. Stationäre Messungen an EAAC1 unter kontrollierten Spannungs und ionalen Bedingungen ließen verschiedene Aussagen zu über 1) die Bindungsreihenfolge von Glutamat und den kotransportierten Ionen an den Transporter, 2) den Anteil der Anionenleitfähigkeit am Glutamatinduzierten Gesamtstrom 3) die Abhängigkeit der Glutamatunabhängigen Leckleitfähigkeit und der Glutamatabhängigen Anionenleitfähigkeit von der Protonen und Natriumkonzentration und 4) die Identifikation des Ladungsträgers beim EAAC1assoziierten Leckstrom. Bei den durchgeführten vorstationären Messungen handelte es sich meist um SubstratsprungExperimente mit Hilfe der LaserpulsPhotolyse von #CNBcaged Glutamat. Damit konnte 1) der geschwindigkeitsbestimmende Schritt im Transportzyklus ermittelt werden, 2) Geschwindigkeitskonstanten verschiedener Teilreaktion im Transportzyklus von EAAC1 abgeschätzt werden und 3) die Spannungsabhängigkeit von Teilreaktionen identifiziert werden. Die Kombination von stationären und vorstationären Messungen mit Hilfe der LaserpulsPhotolyse sowie die Kombination von Ganzzellableitungen und insideout patches ermöglichte damit eine umfassende kinetische Untersuchung der verschiedenen Funktionen von EAAC1 und führten zu dem im folgenden beschriebenen Transportmodell. EAAC1 bindet auf der extrazellulären Seite zunächst ein Natriumion, wobei die Natriumbindungsstelle im elektrischen Feld der Membran liegt (# 25#30 %). Dieser Na beladene Transporterzustand ist assoziiert mit einem Glutamatunabhängigen Leckstrom, der von Anionen getragen ist. Der Na Bindungsreaktion schließt sich eine elektroneutrale Protonenbindung an. Der apparente pKWert des Protonakzeptors in EAAC1 liegt bei # 8, sodass unter physiologischen Bedingungen EAAC1 hauptsächlich in seiner protonierten Form vorliegt. Die nachfolgende Glutamatbindung (KD # 50 µM) ist ebenfalls spannungsunabhängig und erfolgt mit einer Geschwindigkeitskonstanten von # 2#10 7 M #1 s #1 . Sie löst eine elektroneutrale Konformationsänderung aus, die in einem Zeitbereich von 0,5#1 Millisekunde stattfindet und damit langsam ist im Vergleich zu den anschließenden elektrogenen Na Bindungsreaktionen. Der vollständig beladene Transporters transloziert in einem spannungsabhängigen Prozess (# 60#65 % des elektrischen Felds) Glutamat über die Membran mit einer Geschwindigkeitskonstanten von # 800 s #1 bei einem physiologischen Membranpotenzial von #80 mV. Der GlutamatTransportprozess ist mit der Glutamatinduzierten Anionenleitfähigkeit assoziiert, wobei sich beim GlutamatEinwärtstransport ein Verhältnis zwischen Transport und Anionenstrom (von SCN # ) von 1 zu 4 ergab, während es beim GlutamatAuswärtstransport bei 1 zu 1,5 lag. Die Dissoziationsfolge auf der intrazellulären Seite wurde nur für den Protonen-GlutamatKotransport bestimmt und war in umgekehrter Reihenfolge zur extrazellulären Seite. Verschiedene Mechanismen fördern auf der zytosolischen Seite die Dissoziation des Glutamates, bzw. verhindern den GlutamatAuswärtstransport. So führt die Änderung der Zugänglichkeit des Protonakzeptors zur zytosolischen Seite zu einer Verschiebung des apparenten pKWertes zu # 6,5. Damit liegt EAAC1 unter physiologischen Bedingungen auf der intrazellulären Seite hauptsächlich deprotoniert vor, was die Glutamatdissoziation fördert. Ebenso ist die Affinität mit einem 45fach erhöhten K M Wert im Vergleich zur extrazellulären Seite stark herabgesetzt. Die Relokation des Transporters erfolgt nach der Bindung eines Kaliumions und stellt mit einer Geschwindigkeitskonstanten von # 100 s #1 (bei einem Membranpotenzial von #80 mV) den hauptsächlich geschwindigkeitsbestimmenden Schritt im Transportzyklus dar. Bei der Relokation handelt es sich um einen elektrogenen Prozess (# 70#75 % des elektrischen Felds), wobei negative Ladungsträger über die Membran verschoben werden. Daher muss der Transporter über eine Eigenladung von < #1 verfügen. Daraus ergibt sich, dass die zu transportierende Nettoladung von zwei positiven Ladungen pro Transportzyklus auf zwei Reaktionsschritte verteilt ist. Der neuronale Glutamattransporter EAAC1 verfügt damit über verschiedene Mechanismen, den Transportprozess in Richtung Glutamataufnahme in die postsynaptische Nervenzelle zu fördern, entsprechend seiner physiologischen Aufgabe, die Glutamatkonzentration im synaptischen Spalt gering zu halten.