Charakterisierung von Glutamat-Rezeptoren bei Neuronen im auditorischen Hirnstamm der Ratte
- Das Applikationssystem Im Rahmen der vorliegenden Arbeit wurde ein innovatives System für die Applikation von Pharmaka während elektrophysiologischer Experimente entwickelt und getestet. Das AchtkanalApplikationssystem eignet sich hervorragend für Experimente an Hirnschnitten und kann durch folgende Eigenschaften charakterisiert werden: - Das System ist durch die Verwendung von DruckluftVentilen nahezu frei von elektromagnetischen Störfeldern. - Aufgrund der geringen Dimensionen der Applikationspipette (Spitzendurchmesser = 250 µM) können gezielt unterschiedliche Regionen einer Zellkultur oder eines Hirnschnittes beeinflusst werden. - Die geringen Dimensionen des Systems ermöglichen einen kostengünstigen Betrieb, da nur kleine Mengen an Pharmaka benötigt werden. - Das System schaltet exakt und zuverlässig. Alle 8 Kanäle schalten in guter Übereinstimmung, und zwischen den einzelnen Kanälen kann dank eines zentralen Spülkanals akkurat und sicher gewechselt werden. - Mit dem System können Substanzen auf zwei Arten appliziert werden. Es besteht zum einen die Möglichkeit der sogenannten SpitzenApplikation. Die SpitzenApplikation eignet sich besonders für Experimente an Zellkulturen, isolierten Zellen oder Membranstücken, und zeichnet sich bei dieser Art der Anwendung durch einen schnellen Konzentrationsaufbau (< 1 s) aus. Weiterhin können Substanzen mittels der sogenannten PulsApplikation appliziert werden. Die PulsApplikation bietet einerseits den Vorteil einer kontinuierlichen Applikation ohne Druckschwankungen, und ermöglicht andererseits die schnell aufeinanderfolgende Applikation mehrerer Substanzen. Demgemäß eignet sich die PulsApplikation hervorragend für Experimente an Hirnschnitten. Ionotrope GlutamatRezeptoren bei LSO und MNTBNeuronen Das Hauptziel der vorliegenden Arbeit war eine tiefergehende Beschreibung der ionotropen, nonNMDARezeptoren bei Neuronen der LSO des auditorischen Hirnstammes der Ratte. Im Vergleich hierzu wurden entsprechende Untersuchungen auch an MNTBNeuronen durchgeführt. Von besonderem Interesse war dabei der Nachweis funktioneller Kainat Rezeptoren. Im Gegensatz zu RNA oder ProteinNachweisen einzelner Rezeptor Untereinheiten wurden funktionelle Rezeptoren elektrophysiologisch, mit Hilfe der Patch ClampTechnik, charakterisiert. Mit Hilfe von spezifischen Agonisten, Antagonisten und Modulatoren konnten folgende Sachverhalte nachgewiesen werden: - LSO und MNTBNeurone exprimieren funktionelle AMPARezeptoren. - Die GlutamatRezeptor Untereinheit GluR2 ist Bestandteil von AMPARezeptoren bei LSONeuronen. - Funktionelle AMPARezeptoren werden zwischen P3 und P10 von LSO und MNTB Neuronen exprimiert. In diesem Abschnitt der Entwicklung ist die Größe der AMPA Rezeptor vermittelten Ströme unabhängig vom Alter der Tiere. - LSO und MNTBNeurone exprimieren funktionelle KainatRezeptoren. - Im Hinblick auf die KainatRezeptoren gibt es jeweils zwei Klassen von LSO bzw. MNTBNeuronen. LSONeurone lassen sich in eine Klasse, die sich durch schnelle KainatRezeptor vermittelte Ströme auszeichnet, und eine Klasse, die sich durch langsame KainatRezeptor vermittelte Ströme auszeichnet, unterteilen. Den beiden Klassen liegen sehr wahrscheinlich unterschiedliche Rezeptordichten und / oder Unterschiede in der Untereinheitenzusammensetzung zugrunde. MNTBNeurone lassen sich in Zellen, die KainatRezeptoren besitzen, und Zellen, die diesen Typ von Rezeptor nicht besitzen, unterscheiden. - Die GlutamatRezeptor Untereinheit GluR5 ist Bestandteil von KainatRezeptoren bei LSO und MNTBNeuronen. - Funktionelle KainatRezeptoren werden zwischen P3 und P10 von LSO und MNTB Neuronen exprimiert. In diesem Zeitraum ist die Größe der KainatRezeptor vermittelten Ströme unabhängig vom Alter der Tiere.