Charakterisierung intrazellulärer Bindepartner von metabotropen Glutamatrezeptoren der Gruppe III
- Die Aminosäure Glutamat ist der maßgebliche exzitatorische Neurotransmitter im zentralen Nervensystem, und glutamaterge Synapsen sind weit über das ganze Hirn ver breitet. Neben den Ionenkanalgekoppelten (ionotropen) Glutamatrezeptoren (iGluRs) aktiviert Glutamat auch prä und postsynaptische metabotrope Glutamatrezeptoren (mGluRs), die über trimere GProteine und nachgeschalteten Signalkaskaden Einfluss auf die Signalverarbeitung in der Synapse nehmen können (Pin und Duvoisin, 1995). Diesen Rezeptoren werden Aufgaben bei verschiedenen Formen neuronaler Plastizität und Neurotoxizität zugeschrieben (Pizzi et al., 1993; Pin und Duvoisin, 1995; Pekh letski et al., 1996; Pizzi et al., 1996a; Bushell et al., 1997; Maiese et al., 2000; Sabel haus et al., 2000). Zur Zeit sind acht verschiedene mGluRs zuzüglich ihrer Spleißvarian ten bekannt, die in drei Gruppen gegliedert werden, welche sich in ihrer Lokalisation, Struktur und pharmakologischen Eigenschaften unterscheiden (Nakanishi, 1992; Pin et al., 1993). Mitglieder der Gruppe III mGluRs sind spezifisch an der aktiven Zone der Präsy napse lokalisiert und dort an der Regulation der Neurotransmission beteiligt (Shigemoto et al., 1996; Ottersen und Landsend, 1997). Die Mechanismen, die zur spezifischen Lo kalisation führen, konnten bislang noch nicht aufgezeigt werden. Bereits im Vorfeld dieser Arbeit wurde eine Ca 2 abhängige Interaktion von Calmodulin (CaM) mit mGluR7a durch Kopräzipitationsstudien gezeigt. Die CaMBindung ist dabei von phy siologischer Relevanz für die Aktivierung des Rezeptors (O'Connor et al., 1999). In der vorliegenden Arbeit wurde nach neuen Interaktionspartnern für die Gruppe III mGluRs gesucht, um so weitere Aufschlüsse über die präsynaptische Verankerung und Regulati on dieser Rezeptorgruppe zu gewinnen. In einem ZweiHybridScreen konnten dabei die Proteine PxF und SGT, beides Genprodukte unbekannter Funktion, als zwei mögliche Interaktionspartner für mGluR4b identifiziert werden. Die Natur dieser Interaktionen konnte im Verlauf dieser Arbeit nicht genauer bestimmt werden und bleibt somit Gegenstand weiterer Untersuchungen. In einem parallelem Ansatz wurde die Interaktion von mGluR7a mit CaM näher untersucht. Dabei konnte ein hochkonservierter Bereich in allen Gruppe III mGluRs mit Ausnahme von mGluR4b und mGluR6 identifiziert werden, der eine Konsensussequenz zur CaMBindung (1510Motiv) enthält. Neben der CaMBindung konnte für diesen Bereich in Zusammenarbeit mit der Arbeitsgruppe von Dr. Michael Freissmuth auch eine Interaktion mit Gbetagamma nachgewiesen werden. Die GbetagammaBindung an den Rezeptor wird durch Ca 2 abhängige Aktivierung von CaM gehemmt. Es wird daher ein Modell zur dualen Aktivierung von Gruppe III mGluRs vorgeschlagen, welches mögliche Mecha nismen zur negativen Rückkopplung der Glutamatfreisetzung aufzeigt. Zusätzlich wurde eine mögliche Regulation der Gruppe III mGluRs durch PKC Phosphorylierung untersucht. Dabei konnte die in vitroPhosphorylierung eines einzel nen Restes (S862) im intrazellulären CTerminus von mGluR7a nachgewiesen werden, welche zur Hemmung der CaMBindung führte. Aufgrund dieser Daten wird ein erwei tertes Modell formuliert, in dem die Hemmung der Ca 2 /CaMabhängigen Aktivierung der GProteinsignalkaskade durch Phosphorylierung von mGluR7a eine übergeordnete Regulation des Rezeptors darstellt. Da die Gruppe III mGluRs bei Aktivierung zu einer Selbsthemmung der Neuro transmission führen (Pin und Duvoisin, 1995; Takahashi et al., 1996), stellt deren Ca 2 /CaMregulierte Aktivierung und die zusätzliche Regulation durch Phosphorylie rung eine Möglichkeit der Regulation von Lernprozessen dar.