Heliumionisation durch Elektronenstoß: (e,2e)- und (e,3e)- Untersuchungen durchgeführt mittels Rückstoßionenimpulsspektroskopie

  • Im Rahmen dieser Arbeit wurde erstmals die Realisierung eines (e,3e)- Experimentes an Helium mittels der Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) behandelt. Dabei ging es hauptsächlich um den Aufbau, die Entwicklung, Test und die Durchführung des Experiments. Dazu wurde ein neues Kammersystem am Atomphysikkanal der Frankfurter EZR mit zweistufigem Ultraschallgasjet aufgebaut, an dem in Zukunft noch weitere COLTRIMS- Experimente stattfinden werden. In dieser Arbeit wurde eine Dreifach-Koinzidenz zwischen dem gestreuten Projektilelektron, dem einfach- oder zweifach geladenem Rückstoßion und dem langsamen Elektron verwirklicht. Sie stellt das wesentliche Ergebnis der vorliegenden Arbeit dar. Koinzident zum Streuwinkel und Energieverlust des Projektilelektrons wurden hierbei Flugzeiten und Auftrefforte rte von He1 - bzw. He2 - Ionen und von einem der ionisierten Elektronen gemessen. Anhand der durchgeführten umfangreichen Eichmessungen unter Hinzuziehung von Impuls- und Energieerhaltungssätzen lassen sich somit sämtliche Impulse der Teilchen errechnen. Somit gewinnt man Informationen über den Ionisationsprozeß. Desweiteren lassen sich multidifferentielle Wirkungsquerschnitte bestimmen, die sich mit theoretischen Modellen vergleichen lassen. Die Rückstoßionenimpulsverteilungen und die Flugzeitspektren für das He2 -Ion demonstrieren die Signifikaz der erreichten Statistik, trotz der geringen Koinzidenzrate von 17 h-1. Die Meßdaten wurden einer groben Auswertung unterzogen. Die entgültige Analyse, Ergebnisdeutung, Interpretation und Vergleich mit der Theorie fand in dieser Arbeit nicht statt. Die Projektilenergie lag bei allen Messungen bei 550 eV. Der Elektronenstrahl wurde, entgegen der vorherrschenden Meinung, mit einem Blendensystem auskollimiert. Im nächsten Schritt sollen statt mit nur einem mit zwei oder mehreren Schlitzblenden nacheinander der Elektronenstrahl auskollimiert werden, so daß die am vorderen Schlitz gestreuten Elektronen in den nachfolgenden ausgeblendet werden können. Somit verringert man die problematische Untergrundrate auf dem Elektronendetektor. Für weitere Untersuchungen werden momentan neue Spektrometerkonzepte entwickelt. Bei der Konzeption des neuen Spektrometers wird der Abstand zwischen Targetzone und Elektronendetektor größer gewählt. Dies verringert zwar den Nachweisraumwinkel für die Elektronen, aber man erreicht dadurch eine Verringerung der Untergrundselektronen. Der Verringerung des Nachweisraumwinkels kann man entgegenwirken, indem man einen großen MCP- Detektor mit 80 mm Durchmesser einsetzt. Der Eintrittsbereich des Projektilstrahls in das Rückstoßionenimpulsspektrometer sollte großzügig gewählt werden, da auf diese Art und Weise verhindert werden kann, daß der Elektronenstrahl die Potentialringe in Eintrittsbereich streift und wohlmöglich unerwünschte Sekundärelektronen erzeugt, die im Extraktionsfeld des Spektrometers auf den Elektronendetektor hin beschleunigt werden und ebenfalls für Untergrund sorgen. Eine Pulsung der Elektronenkanone über die Wehneltspannung vorzunehmen und den Puls als Start oder Trigger für die Datenaufnahme einzusetzen ist nur dann sinnvoll, wenn die Flugzeit der Elektronen um mindestens eine Größenordnung größer ist als die erreichbare Pulslänge. Nach Auskunft unserer Elektronik liegen die erreichbaren Pulslängen bei etwa 5 ns. Aufgrund der notwendigen Stabilität sowohl in der Elektronik als auch in der Kühlung des Kaltkopfes ist eine insgesamt kürzere Meßzeit erstrebenswert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ekrem Ertürk
URN:urn:nbn:de:hebis:30-18628
URL:http://hsbpc1.ikf.physik.uni-frankfurt.de/web/publications/atomic/electron_atom/
Advisor:Horst Schmidt-Böcking
Document Type:diplomthesis
Language:German
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/10/13
Page Number:82 S.
HeBIS-PPN:186053770
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht