Machine-learning-based vs. manually designed approaches to anaphor resolution: the best of two worlds

  • In the last years, much effort went into the design of robust anaphor resolution algorithms. Many algorithms are based on antecedent filtering and preference strategies that are manually designed. Along a different line of research, corpus-based approaches have been investigated that employ machine-learning techniques for deriving strategies automatically. Since the knowledge-engineering effort for designing and optimizing the strategies is reduced, the latter approaches are considered particularly attractive. Since, however, the hand-coding of robust antecedent filtering strategies such as syntactic disjoint reference and agreement in person, number, and gender constitutes a once-for-all effort, the question arises whether at all they should be derived automatically. In this paper, it is investigated what might be gained by combining the best of two worlds: designing the universally valid antecedent filtering strategies manually, in a once-for-all fashion, and deriving the (potentially genre-specific) antecedent selection strategies automatically by applying machine-learning techniques. An anaphor resolution system ROSANA-ML, which follows this paradigm, is designed and implemented. Through a series of formal evaluations, it is shown that, while exhibiting additional advantages, ROSANAML reaches a performance level that compares with the performance of its manually designed ancestor ROSANA.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Roland Stuckardt
URN:urn:nbn:de:hebis:30-12948
Parent Title (English):Proc. 4th Discourse Anaphora and Anaphor Resolution Colloquium (DAARC2002), University of Lisbon, Sept. 2002, 211-216
Document Type:Conference Proceeding
Language:English
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Universit├Ątsbibliothek Johann Christian Senckenberg
Release Date:2005/07/26
GND Keyword:Textanalyse; Linguistische Datenverarbeitung; Computerlinguistik
Page Number:6
Source:Publ. in: Proc. 4th Discourse Anaphora and Anaphor Resolution Colloquium (DAARC2002), University of Lisbon, Sept. 2002, 211-216
HeBIS-PPN:226532844
Institutes:Informatik und Mathematik / Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoDeutsches Urheberrecht