Effiziente Pseudozufallsgeneratoren: RSA- und x²-mod-N-Generator

  • In der vorliegenden Diplomarbeit beschäftigen wir uns mit kryptographisch sicheren Pseudozufallsgeneratoren. Diese e±zienten Algorithmen erzeugen zu zufälliger Eingabe deterministisch eine längere Bitfolge, die praktisch von einer Folge zufälliger Münzwürfe nicht unterscheidbar ist. Wir geben die Definitionen von A. Yao sowie M. Blum und S. Micali, beweisen die Äquivalenz und charakterisieren den Unterschied zur klassischen Sichtweise von Zufallsgeneratoren. Mit der Blum-Micali-Konstruktion zeigen wir, wie man aus einer Oneway-Permutation und zugehörigem Hardcore-Prädikat einen kryptographisch sicheren Pseudozufallsgenerator konstruiert: Man wendet auf einen zufälligen Startwert iterativ die Oneway-Funktion an und gibt jeweils das Hardcore-Prädikat des Urbilds aus. Wir stellen das allgemeine Hardcore- Prädikat inneres Produkt modulo 2 von L.A. Levin und O. Goldreich vor und beweisen mit Hilfe des XOR-Lemmas von U.V. Vazirani und V.V. Vazirani die Verallgemeinerung zu einer Hardcore-Funktion, die statt eines Prädikats mehrere Bits ausgibt. Man geht davon aus, daß die Verschlüsselungsfunktionen des RSA- und des Rabin-Public- Key-Kryptosystems Oneway-Permutationen sind. Basierend auf dem Rabin-System haben L. Blum, M. Blum und M. Shub den x2-mod-N-Generator aufgebaut, W. Alexi, B. Chor, O. Goldreich und C.P. Schnorr haben den RSA-Generator konstruiert und den Sicherheitsbeweis zum x2-mod-N-Generator verbessert. Diese Generatoren basieren auf der Blum-Micali-Konstruktion mit dem Hardcore-Prädikat des untersten Bits. Durch neue Ideen können wir die beweisbare Sicherheit der Generatoren deutlich erhöhen, so daß in der Praxis kleinere Schlüssellängen genügen. Bisher war zum Beispiel für den x2-mod-N-Generator bekannt, daß man mit einem Algorithmus A, der das unterste Bit der Wurzel modulo einer n-Bit- Blumzahl mit Wahrscheinlichkeit 1 2 + ² in Zeit |A| = ­¡n3¢ berechnet, den Modul in Zeit O¡n3² 9|A|¢ mit Wahrscheinlichkeit ²2 64 faktorisieren kann. Wir verbessern die Laufzeit zu O¡n² 4 log2(n² 1)|A|¢ und Wahrscheinlichkeit 1 9 . Diese neuen Resultate wurden auf der Eurocrypt-Konferenz im Mai 1997 in Konstanz vorgestellt, D.E. Knuth hat sie bereits in die neue Auflage seines Standardwerks The Art of Computer Programming aufgenommen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Roger Fischlin
URN:urn:nbn:de:hebis:30-12840
URL:http://www.mi.informatik.uni-frankfurt.de/research/mastertheses/
Document Type:diplomthesis
Language:German
Year of Completion:1997
Year of first Publication:1997
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:1997/10/25
Release Date:2005/07/26
HeBIS-PPN:184929164
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht