Breaking Knapsack cryptosystems by max-norm enumeration

  • At EUROCRYPT '94 G. Orton proposed a public key cryptosystem based on dense compact knapsacks. We present an efficient depth first search enumeration of l-infinite-norm short lattice vectors based on Hoelder's inequality and apply this algorithm to break Orton's cryptosystem.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Harald Ritter
URN:urn:nbn:de:hebis:30-12511
URL:http://www.mi.informatik.uni-frankfurt.de/research/papers.html
Document Type:Article
Language:English
Date of Publication (online):2005/07/19
Year of first Publication:1996
Publishing Institution:Universit├Ątsbibliothek Johann Christian Senckenberg
Release Date:2005/07/19
Tag:Breaking knapsack cryptosystems; Knapsack problem; Lattice basis reduction; NP-hardness; Shortest lattice vector problem; Subset sum problem
Note:
Postprint, auch in: 1st International Conference of the Theory and Appications of Cryptology - Pragocrypt '96, pp. 480-492, 1996
Source:1st International Conference of the Theory and Appications of Cryptology - Pragocrypt '96, pp. 480-492, 1996 - http://www.mi.informatik.uni-frankfurt.de/research/papers.html
HeBIS-PPN:224789678
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht