How many quasiplatonic surfaces?

  • We show that the number of isomorphism classes of quasiplatonic Riemann surfaces of genus <= g has o growth of typ g exp (log g). The number of non-isomorphic regular dessins of genus <= g has the same growth type.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jan-Christoph Schlage-Puchta, Jürgen Wolfart
URN:urn:nbn:de:hebis:30-11860
URL:http://www.math.uni-frankfurt.de/~wolfart/wolfart.html
Document Type:Preprint
Language:English
Date of Publication (online):2005/06/29
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/06/29
Tag:Dessins d'enfants; compact Riemann surfaces; subgroup growth
Note:
Preprint, Frankfurt a.M. 2004, erscheint im Archiv d. Math.
Source:http://www.math.uni-frankfurt.de/~wolfart/wolfart.html, Preprint, Frankfurt a.M. 2004, erscheint im Archiv d. Math.
HeBIS-PPN:129536733
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification:14-XX ALGEBRAIC GEOMETRY / 14Hxx Curves / 14H30 Coverings, fundamental group [See also 14E20, 14F35]
20-XX GROUP THEORY AND GENERALIZATIONS / 20Exx Structure and classification of infinite or finite groups / 20E07 Subgroup theorems; subgroup growth
30-XX FUNCTIONS OF A COMPLEX VARIABLE (For analysis on manifolds, see 58-XX) / 30Fxx Riemann surfaces / 30F10 Compact Riemann surfaces and uniformization [See also 14H15, 32G15]
Licence (German):License LogoDeutsches Urheberrecht