Entwicklung und Aufbau eines Gastargets aus metastabilem, spinpolarisierten He*

  • Um zu sehen, was im atomaren Bereich "die Welt im Innersten zusammenhält", werden seit fast einem Jahrhundert atomphysikalische Stoßexperimente durchgeführt. Es ist also möglich, durch den Beschuß von "Targetteilchen" mit "Projektilteilchen" Aussagen über verschiedene Größen in der atomaren Welt zu treffen. Hierbei werden nicht nur Eigenschaften wie der "Durchmesser" oder eine "Ladungsverteilung" eines Atoms untersuchbar, sondern - durch entsprechend geschickte Variation des Prinzips "Stoßexperiment" - auch Größen, die ein Laie niemals mit einem Stoß zwischen zwei Teilchen in Verbindung brächte. Moderne Experimente erlauben es inzwischen zum Beispiel, selektiv die Impulsverteilung einzelner Elektronen in Atomen und Molekülen sichtbar zu machen, indem diese durch Photonen entsprechender Energie aus dem zu untersuchenden Teilchen herausgerissen werden. Besagte Experimente stellen nicht nur hohe Anforderungen an die Nachweiseinheit, die den eigentlichen Prozeß sichtbar macht, sondern auch an das verwendete Target und das Projektil. Im Bereich der atomaren Grundlagenforschung bietet sich Helium als zu untersuchendes Objekt oftmals an. Um die Natur zu verstehen, ist es nötig, gemessene Größen mit einer Theorie, die den untersuchten Vorgang beschreiben soll, zu vergleichen. Im Bereich der theoretischen Physik kann bisher nur das Wasserstoffatom, das ein sog. "Zweikörperproblem" ist, ohne Näherungsverfahren vollständig beschrieben werden. Ein Heliumatom stellt also das "einfachste" atomare System dar, das als noch nicht "komplett verstanden" gilt. Genauso ist ein Heliumatom mit seinem Atomkern und seinen zwei Elektronen das erste "Mehrelektronensystem" im Periodensystem. Es können hier also im Vergleich zu Wasserstoff auch Korrelationseffekte zwischen Elektronen untersucht werden. Die gesamte Dynamik innerhalb des Atoms erhält einen anderen Charakter. Bisherige Experimente mit Helium innerhalb unserer Arbeitsgruppe haben allerdings eine prinzipielle Beschränkung: es ist im Allgemeinen sehr schwierig, den Spin der beteiligten Elektronen im Experiment nachzuweisen, so daß alle bisherigen Messungen immer die Einstellung der Elektronenspins nicht berücksichtigen. Es wird also über den Spin gemittelt gemessen. Ein Weg, dieses Problem zu umgehen, ist, neben einer wirklichen Messung des Spins, den Spin im Anfangszustand - also vor dem Streuexperiment - zu kennen. Dies geschieht in der vorliegenden Arbeit dadurch, daß Heliumatome in einem durch "Mikrostrukturelektroden" erzeugten Mikroplasma angeregt werden, und sich so die Spins ihrer beiden Elektronen zum Teil auch parallel zueinander einstellen. Während bisherige Ansätze das Prinzip verfolgen, die angeregten Heliumatome in Niederdruckplasmen bei einigen Millibar zu erzeugen, wird die Plasmaquelle in dieser Arbeit bei Drücken von bis zu einem Bar betrieben. Dadurch kann das Prinzip des "supersonic jets" ausgenutzt werden, so daß der hier erzeugte Atomstrahl eine interne Temperatur von einigen Millikelvin und eine mittlere Geschwindigkeit von 1000 m/s besitzt. Durch einen nur 10 cm langen Separationsmagneten werden die angeregten Zustände mit Spin (#; #) von den Zuständen mit Spin ("; ") und den nicht- angeregten Heliumatomen getrennt und in einem Fokuspunkt für ein Streuexperiment zur Verfügung gestellt. In der folgenden Arbeit wird also ein sehr kompakter Aufbau eines Gastargets aus angeregtem Helium mit polarisiertem Elektronenspin vorgestellt. Ein Target aus angeregtem Helium hat außerdem einen weiteren großen Vorteil gegenüber gewöhnlichen Heliumtargets. In der modernen experimentellen Physik werden oftmals Laser zur Manipulation von Atomen eingesetzt. So ist es möglich, durch gezielte Anregung eines Atoms mit einem Laser dieses zum Beispiel extrem zu kühlen. Hierzu müssen allerdings Anregungsniveaus im Atom zur Verfügung stehen, die mit den Wellenlängen heutiger Laser erreicht werden können. Das erste Anregungsniveau von Helium liegt jedoch mit 19.8 eV deutlich zu hoch. Der nächst höhere P-Zustand ist von diesem Niveau aber nur noch ca. 1.1 eV entfernt. Photonen dieser Energie können leicht mit Lasern erzeugt werden. Angeregtes Helium ist also durch Laser manipulierbar und liefert so zum Beipiel auch den Ausgangspunkt für die Bose-Einstein Kondensation von Helium.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Till JahnkeORCiDGND
URN:urn:nbn:de:hebis:30-8740
Document Type:diplomthesis
Language:German
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/03/22
Release Date:2005/05/09
Last Page:83
HeBIS-PPN:128959584
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht