Genetically modified natural killer cells specifically recognizing the tumor-associated antigens ErbB2/HER2 and EpCAM
- The continuously growing natural killer (NK) cell line NK-92 is highly cytotoxic against malignant cells of various origin without affecting normal human cells. Based on this selectivity, the potential of NK-92 cells for adoptive therapy is currently being investigated in phase I clinical studies. To further enhance the antitumoral activity of NK-92 cells and expand the range of tumor entities suitable for NK-92-based therapies, here by transduction with retroviral vectors we have generated genetically modified NK-92 cells expressing chimeric antigen receptors specific either for the tumor-associated ErbB2 (HER2/neu) antigen or the human Epithelial Cell Adhesion Molecule (Ep-CAM). Both antigens are overexpressed by many tumors of epithelial origin. The chimeric antigen receptors consist of either the ErbB2 specific scFv(FRP5) antibody fragment or the Ep-CAM specific scFv(MOC31), a flexible hinge region derived from CD8, and transmembrane and intracellular regions of the CD3 zeta chain. Transduced NK-92-scFv(FRP5)-zeta or NK-92-scFv(MOC31)-zeta cells express high levels of the fusion proteins on the cell surface as determined by FACS analysis. In europium release assays no difference in cytotoxic activity of NK-92 and transduced NK-92 cells towards ErbB2 or Ep-CAM negative targets was found. However, even at low effector to target ratios transduced NK-92 cells specifically and efficiently lysed established ErbB2 or Ep-CAM expressing tumor cells that were completely resistant to cytolytic activity of parental NK-92 cells. Similarly, ErbB2-positive primary breast cancer cells isolated from pleural effusions of patients with recurrent disease were selectively killed by NK-92-scFv(FRP5)-zeta. In an in vivo model in immunodeficient mice treatment with retargeted NK-92-scFv(FRP5)-zeta, but not parental NK-92 cells resulted in markedly delayed growth of ErbB2 transformed cancer cells. These results demonstrate that efficient retargeting of NK-92 cytotoxicity can be achieved, and might allow the generation of potent cell-based therapeutics for the treatment of ErbB2 and Ep-CAM expressing malignancies. This therapeutic approach might be applicable for a large variety of different cancers where suitable cell surface antigens have been identified.
Author: | Christoph Uherek, Tina Müller, Torsten Tonn, Barbara Uherek, Hans-Georg Klingemann, Winfried S. Wels |
---|---|
URN: | urn:nbn:de:hebis:30-44507 |
DOI: | https://doi.org/10.1186/1475-2867-4-S1-S7 |
Parent Title (German): | Cancer Cell International |
Publisher: | BioMed Central |
Place of publication: | London |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2007/05/22 |
Year of first Publication: | 2004 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2007/05/22 |
Volume: | 4 |
Issue: | (Suppl 1) S 7 |
Page Number: | 1 |
First Page: | 1 |
Last Page: | 1 |
Note: | licensee BioMed Central Ltd. |
Source: | Cancer Cell International 2004, 4(Suppl 1):S.7. - Association for Immunotherapy of Cancer: Cancer Immunotherapy – 2nd Annual Meeting Mainz, Germany. 6–7 May 2004. - http://www.cancerci.com/content/4/S1/S7 |
HeBIS-PPN: | 188413812 |
Institutes: | Angeschlossene und kooperierende Institutionen / Georg-Speyer-Haus |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
Licence (German): | ![]() |