Instabilitäten schwerer Fermi-Flüssigkeiten in Systemen auf Cer-Basis

  • In den intermetallischen Verbindungen CeCu2Si2, CeCu2Ge2, CePd2Si2 und im CeCu6-xAux-System mit x = 0, 0,1, 0,2 bestimmen die elektronischen Wechselwirkungen, an denen die 4f-Elektronen der periodisch angeordneten Cer-Ionen partizipieren, das Tieftemperaturverhalten. Die magnetische Wechselwirkung der 4f-Elektronen mit den Leitungselektronen der metallischen Matrix führt zur Ausbildung des Schwere Fermionen Zustands. Auf diese Kondo-artige Wechselwirkung geht die Destabilisierung der magnetischen 4f-Momente mit sinkender Temperatur zurück. Bei hinreichend tiefen Temperaturen wird ein Kohärenzregime erreicht, in dem Quasiteilchen mit schweren Massen entstehen, und der Schwere Fermionen Zustand zeigt Merkmale einer schweren Fermiflüssigkeit. Im Fall von CeCu2Si2 gelten die schweren Quasiteilchen als Träger der supraleitenden Phase, die unterhalb von 1 K auftritt. Mit der Kondo-artigen Wechselwirkung konkurriert die magnetische Wechselwirkung zwischen den f-Elektronen, welche das Auftreten magnetischer Ordnung begünstigt. Um die magnetischen bzw. supraleitenden Tieftemperaturinstabilitäten in CeCu2Si2, Ce-Cu2Ge2, CePd2Si2 sowie im CeCu6-xAux-System mit x = 0, 0,1, 0,2 und das daraus resultierende Tieftemperaturverhalten zu untersuchen, wurden für diese Arbeit Ultraschall- und gegebenenfalls m+SR-Experimente an Einkristallen durchgeführt: Die Messungen der relativen Änderung Dcii/cii 0 der longitudinalen elastischen Konstanten cii, i =1,2,3, durch Ultraschall wurden in Abhängigkeit von der Temperatur T, dem statischen Magnetfeld B bis zu 27 T und im Fall von CeCu2Si2 auch unter uniaxialem Druck durchgeführt. Bei den m+SR-Experimenten an den CeCu2Si2-, CeCu2Ge2- und CePd2Si2-Einkristallen wurde die Zeitentwicklung der Myonspinpolarisation (das m+SR-Signal) unter dem Einfluss der inneren magnetischen Felder, die durch die magnetischen Momente der Probe am Myonstopport erzeugt werden können, beobachtet, meistens ohne dabei ein äußeres Magnetfeld anzulegen. Das Verhalten des Signals wurde i. a. mit einer mehrkomponentigen Anpassungsfunktion beschrieben. Die Temperaturabhängigkeit der relativen Amplituden, der Relaxationsraten und gegebenenfalls der Präzessionsfrequenzen dieser Komponenten kann die Entwicklung der verschiedenen Phasen in den Proben widerspiegeln. Ein Schwerpunkt dieser Arbeit liegt auf der Untersuchung der Wechselbeziehung zwischen der Supraleitung (SL) und der sie im B-T-Diagramm umgebenden A-Phase in CeCu2Si2. Auf der Basis von Symmetrieargumenten wurde nämlich aus dem Verhalten der elastischen Konstanten in Einkristallen, in denen die supraleitende Phase durch die Übergangssequenz C (paramagnetische Phase) ® A ® SL erreicht wird, ein außergewöhnliches Phänomen abgeleitet [Bruls, 1994a]: Die A-Phase, die magnetische Signaturen aufweist und immer noch von rätselhafter Natur ist, wird von der Supraleitung verdrängt. Auslöser für die Formulierung eines solchen Szenarios war die große positive Stufe in den elastischen Konstanten (7,5 x 10-4 in Dc11(T)/c11 0 von Einkristall #3S) am Übergang in die Supraleitung statt der erwarteten kleinen negativen Stufe. Im Bild eines Verdrängungseffektes wird die Hypothese aufgestellt, dass am direkten Übergang von C nach SL eine kleine negative Stufe auftritt. Die in der Gesamtbilanz positive Stufe am Übergang von A nach SL kommt dadurch zustande, dass diese kleine negative durch eine größere positive Stufe, die den simultanen Rückgang des APhasenordnungsparameters anzeigt, kompensiert wird. In den Einkristallen liegen die verschiedenen Phasen im B-T-Gebiet unterhalb von 1 K. Dies gilt auch für die B-Phase, die sich im Hochfeld an die A-Phase anschließt. A- und B-Phase zeigen eine Probenvariation, die sich in erster Linie in einer Reduktion der Anomalien und Effekte in verschiedenen Messgrößen spiegelt, aber auch in einer Streuung der Übergangstemperaturen. Die supraleitende Übergangstemperatur ist stark von der Cu-Stöchiometrie abhängig. Auf diese Probenabhängigkeiten lassen sich die unterschiedlichen Sichten auf die Wechselbeziehung zwischen der Supraleitung und der sie umgebenden Phase zurückführen. Sowohl eine Koexistenz als auch eine Konkurrenz wurde in Betracht gezogen. Aus m+SRMessungen an polykristallinem CeCu2Si2-Material wurde gefolgert, dass sich Supraleitung und magnetische Ordnung inhomogen im Probenvolumen entwickeln. Die im Rahmen dieser Arbeit durchgeführten Schallexperimente an einer Serie supraleitender CeCu2Si2-Einkristalle zeigen unterschiedliche Typen, die sich in der Ausprägung der A- und der B-Phasenanomalien unterscheiden: Am reinen Supraleiter (Einkristall #4B) ohne A- und B-Phase wurde die dem Verdrängungseffekt zugrunde gelegte Hypothese verifiziert, dass für den direkten Übergang von C nach SL eine kleine negative Stufe (- 0,6 x 10-4 in Dc11(T)/c11 0) auftritt. Ein weiterer Einkristall (#1B) lässt sich unabhängig vom mehrfachen Tempern im Feldbereich unterhalb von etwa 1,5 T als quasi reiner Supraleiter identifizieren. Die A-Phase ist nicht bis ins Nullfeld ausgedehnt. Die der A- bzw. B-Phase zugeordneten Hochfeldanomalien sind aber in Abhängigkeit von der Zahl der Tempervorgänge unterschiedlich stark reduziert. Die Verbreiterung der Anomalien wurde als Ausdruck einer Verteilung von Übergangstemperaturen und kritischen Feldern diskutiert. Ihre Reduktion lässt sich in diesem Bild als Ausbildung der A- bzw. B-Phase in einem reduzierten Probenvolumen auffassen. Trotzdem zeigt die elastische Konstante beim Passieren der A-Phasengrenze als Funktion des Feldes scharfe Verdrängungsanomalien. Die Schärfe des supraleitenden Übergangs prägt sich dem Verdrängungseffekt auf. Obwohl bei der Analyse von Dc11/c11 0 eine Konkurrenz der Phasen zugelassen wurde, der eine räumliche Separation im Probenvolumen zugrunde liegt, musste aus der Schärfe der Verdrängungsstufe und der Nettobilanz der Stufenhöhen an den verschiedenen Übergängen gefolgert werden, dass beim Passieren der A-SL-Phasengrenzlinie in Probenbereichen, die sich in der A-Phase befinden, die A-Phase durch die Supraleitung verdrängt wird. Im Fall von Übergängen ausreichender Schärfe ist die Ausbildung der A- und der SL-Phase und die Verdrängung homogen. In die Kategorie des Einkristalls #1B wurde ein weiterer Einkristall (#3Nu) eingeordnet, der unter ähnlichen Züchtungsbedingungen wie die Einkristalle #1Nu und #2Nu (#1,2Nu) hergestellt wurde. Durch den Vergleich der Schallexperimente an den verschiedenen Kristallen wurde der Einkristall #3S als Prototyp für einen Supraleiter mit ausgeprägten und scharfen A-Phasen- und Verdrängungsanomalien identifiziert. In diesem liegt bei B = 0 die Temperatur Tc für den Übergang von A nach SL dicht unterhalb von TA für den Übergang in die A-Phase. Für die Qualität des Prototyps #3S stehen die im Rahmen dieser Arbeit gefundenen magnetoakustischen Quantenoszillationen. Seine anisotropen B-T-Diagramme wurden für statische Magnetfelder bis 27 T gemessen. Eine weitere Phase, die sich der B-Phase im Hochfeld anschließt, konnte im zugänglichen Temperatur- und Feldbereich nicht gefunden werden. In den großen Einkristallen #1,2Nu ließ sich das Verhalten von #3S in wesentlichen Punkten reproduzieren. Zusammen ergaben sie hinreichend viel Material einheitlicher Eigenschaften, um daran m+SR-Experimente durchzuführen. Ihre Schallanomalien erreichen fast vergleichbare Größen wie die in #3S, sind jedoch weniger scharf als in diesem. In den Dämpfungsmessungen an den Phasenübergängen treten größere Unterschiede zwischen #2Nu und #3S hervor. Die vergleichende Analyse der relativen Dämpfung an den diversen Übergängen stützt den Befund, dass die Supraleitung die A-Phase verdrängt. Die Schallexperimente an #3S unter uniaxialem Druck entlang der a-Achse des tetragonalen Gitters von CeCu2Si2 zeigen, dass schon geringer Druck (» 0,3 kbar) eine Verschiebung der Phasengrenzlinien bewirkt: Die A-Phase wird destabilisiert, im Gegenzug wird die Supraleitung stabilisiert. Bevor noch die Verschiebung merklich wird, tritt eine allerdings stark anisotrope Reduktion der Anomaliegrößen auf. Letztere korrespondiert mit der Anisotropie des statischen Verzerrungszustands, den der uniaxiale Druck bewirkt. Bei ca. 0,3 kbar wird die APhasengrenzlinie merklich zu kleineren und die Grenzlinie des Übergangs von A nach SL zu höheren Feldern verschoben. Im Bereich der Übergangstemperaturen TA und Tc bei B = 0 ist das Verhalten der Phasen aufgrund der reduzierten Schallanomalien schwieriger zu analysieren. Auch wenn davon ausgegangen wird, dass die Anomalien unter dem Einfluss des Druckes an sich reduziert sind, können die Größenverhältnisse und die Verbreiterung der Anomalien anzeigen, dass aufgrund der gegenläufigen Druckabhängigkeit von TA und Tc nur noch ein Teilvolumen A-Phase entwickelt. Die Schallexperimente wurden auf Einkristalle der zu CeCu2Si2 isostrukturellen Verbindungen CeCu2Ge2 und CePd2Si2 ausgedehnt. Diese ordnen bei Normaldruck langreichweitig mit bekannter magnetischer Struktur. CeCu2Ge2 geht bei ca. 4,4 K in eine inkommensurabel [Knopp,1989], CePd2Si2 bei ca. 10 K in eine kommensurabel geordnete antiferromagnetische Phase über [Grier, 1988]. Die Messungen an einem CeCu2Ge2-Einkristall mit TN = 4,5 K führen für B // a auf ein komplexes B-T-Diagramm, dessen Topologie durch mindestens einen kritischen Punkt gekennzeichnet ist. Im Nullfeld gibt es keine reproduzierbaren Hinweise auf einen weiteren Phasenübergang. Auch bei CeCu2Ge2 und CePd2Si2 erscheint der Magnetismus als sensitiv auf die Stöchiometrie und strukturelle Inhomogenitäten. Für beide Verbindungen treten Einkristalle mit reduziertem TN auf. Dies wird aber nicht von einer signifikanten Reduktion der Anomaliegrößen begleitet. Im Fall der CeCu2Ge2-Einkristalle mit TN = 3,5 K tritt bereits im Nullfeld ein weiterer Übergang (M) bei einer Temperatur TM im Bereich von 1,7 K-2,5 K auf, der sich für B // a entlang der M-Linie auf den kritischen Punkt zubewegt. Im B-T-Gebiet, das in der Halbebene oberhalb der Temperatur des kritischen Punktes liegt, gleicht die Topologie des Phasendiagramms der des 4,5 K-Einkristalls. Darauf stützt sich unter anderem die Folgerung, dass bei B = 0 für TM < T < TN die magnetischen Strukturen der Einkristalle mit TN = 4,5 K und TN = 3,5 K einander ähnlich sind. In einem CePd2Si2-Einkristall mit TN = 10 K verharrt TN für B // c auch bei 12 T auf dem Wert für B = 0. Die vorhandenen Ultraschallmessungen geben keine Hinweise auf weitere Übergänge für T < TN und B £ 12 T. Dies gilt auch für den CePd2Si2-Einkristall mit einem reduzierten TN von 8,8 K. Bei den m+SR-Experimenten an den CeCu2Ge2- und CePd2Si2-Einkristallen mit reduziertem TN wurde erwartet, bei geeigneter experimenteller Geometrie in der geordneten Phase ein Präzessionsmuster im m+SR-Signal zu erhalten. Hierfür muss in der Verteilung der inneren Magnetfelder, die von den geordneten magnetischen Momenten erzeugt werden und um welche die Myonenspins präzedieren, genügend statistisches Gewicht auf einem endlichen Feldbetrag liegen. Im Fall von CeCu2Ge2 ist aufgrund der Inkommensurabilität mit einer der magnetischen Struktur innewohnenden Relaxation des Signals zu rechnen. Sowohl in CeCu2Ge2 als auch in CePd2Si2 ist der Übergang in die geordnete Phase durch das Auftreten einer schnell relaxierenden Komponente gekennzeichnet. Diese ist auch innerhalb der geordneten Phasen dominant. Der zügige Anstieg ihrer Amplitude korrespondiert mit der Stufenanomalie in den elastischen Konstanten am Übergang. Das in CePd2Si2 beobachtete Präzessionsmuster bzw. der Ansatz zu nicht monotonem Verhalten in CeCu2Ge2 unterhalb des Übergangs ist nur schwach ausgeprägt. Aus der schnellen Anfangsdepolarisation, von welcher der Großteil des Signals betroffen ist, wurde geschlossen, dass eine Inhomogenität der Feldverteilung infolge struktureller Inhomogenitäten der Proben Ursache für die Diskrepanzen zwischen beobachtetem und erwartetem Verhalten ist. Im Fall von CeCu2Ge2 können neben den Störungen der Gitterperiodizität dynamische Effekte auf Grund der Nähe zu den M-Übergängen bei TM < TN hinzukommen. Die m+SR-Experimente an supraleitenden CeCu2Si2-Einkristallen zeigen, dass mit der Entwicklung der A-Phase eine gaußförmig schnell relaxierende Komponente im zweikomponentigen m+SR-Signal verknüpft ist. Das Verhalten dieser Komponente lässt sich durch die Temperaturabhängigkeit ihrer Amplitude a1 und ihrer Rate S1 charakterisieren. Sie ist in den Einkristallen #1,2Nu, die in den elastischen Konstanten große A-Phasen- und Verdrängungsanomalien aufweisen, zu beobachten, nicht aber im Supraleiter #1B, der im Nullfeld keine APhase ausbildet, sondern direkt in die supraleitende Phase (SL) übergeht. Aus dem Vergleich der Werte für die Relaxationsrate der schnell relaxierenden Signalkomponente wurde geschlossen, dass die A-Phase mit dem Zustand der magnetischen Volumina, die in Polykristallen detektiert wurden und deren magnetische Momente elektronischen Ursprungs sein müssen [Luke, 1994,; Feyerherm, 1997], identisch ist. In der SL-Phase von #1B ist die gaußförmige Relaxation des m+SR-Gesamtsignals so langsam wie in der C-Phase. Im m+SR-Signal der Einkristalle kann übereinstimmend mit den Polykristalldaten in der APhase für die gewählte Geometrie kein spontanes Präzessionsmuster beobachtet werden. Die monotone, gaußförmige Relaxation des Signals weist auf eine inhomogene Feldverteilung mit statistisch verteilten Magnetfeldbeträgen hin. Diese Felder haben eher statischen Charakter. In den Einkristallen #1,2 Nu sind aber die mittleren Übergangstemperaturen der Phasenübergangssequenz C-A-SL gegenüber dem Prototyp #3S reduziert und die Schallanomalien verbreitert. Aufgrund der m+SR-Ergebnisse für die CeCu2Ge2- und CePd2Si2-Proben mit reduzierten Übergangstemperaturen wurde daher in Betracht gezogen, dass die im m+SR-Signal erkennbaren Merkmale der Feldverteilung nicht nur auf die „Struktur“ oder den Ordnungstypus der A-Phase zurückgehen, sondern auch durch strukturelle Inhomogenitäten des Materials geprägt sind. Störungen des Kristallgitters können eine Inhomogenität der Feldverteilung bewirken, durch welche die Charakteristika der A-Phase zumindest teilweise verdeckt werden können. Überhaupt kann der Ordnungstyp der A-Phase untrennbar mit dem Vorhandensein von Gitterstörungen verknüpft sein. Um die Natur der A-Phase eindeutig zu klären, sind Neutronenbeugungsexperimente notwendig. Bei den im Zusammenhang mit dieser Arbeit durchgeführten Neutronenexperimenten konnten bislang keine magnetischen Bragg-Reflexe gefunden werden. Die m+SR-Experimente an den Einkristallen bestätigen das Szenario der Verdrängung der APhase durch die Supraleitung, wie es in den Schallexperimenten an den CeCu2Si2-Einkristallen gefunden wurde: In den Einkristallen #1,2 Nu steigt die normierte Amplitude a1(T) der Komponente des m+SR-Signals, die auf die A-Phase zurückgeht, unterhalb von 0,80 K zügig auf einen Maximalwert von 75 % bei ca. 0,60 K an. Dieser Anstieg von a1 korrespondiert mit der negativen Stufenanomalie, die in der Temperaturabhängigkeit der relativen Änderung Dcii(T)/cii 0 (i =1,3) der elastischen Konstanten beim Übergang von der C- in die A-Phase auftritt. Die Abnahme von a1 unterhalb von 0,60 K korrespondiert mit der positiven Stufenanomalie in Dcii/cii 0 am Übergang von A nach SL. Tc = 0,60 K wird mit dem Einsetzen der Supraleitung assoziiert. Diese Korrespondenz zwischen Schallanomalien und a1(T) geht soweit, dass der Verlauf von Dcii(T)/cii 0 sich beinahe durch die Multiplikation von a1(T) mit einem konstanten Proportionalitätsfaktor reproduzieren lässt. Mit Einschränkungen kann a1(T) als Maß für das Probenvolumen, das sich in der A-Phase befindet, betrachtet werden. Dcii(T)/cii 0 skaliert also mit dem A-Phasenvolumen. Dieser Zusammenhang ergibt sich auch aus einer einfachen Modellbetrachtung für eine inhomogene Entwicklung und Verdrängung der A-Phase durch die Supraleitung im Probenvolumen. Der Proportionalitätsfaktor ist hierbei mit der negativen Stufe in Dcii(T)/cii 0 am Übergang von C nach A in einer idealen homogenen Probe identisch. Im Fall des Einkristalls #3S ist im Bereich des Übergangs von C nach A der Verlauf der Kurve, die mit -7,9 x 10-4 a1(T) errechnet wurde, mit Dc11(T)/c11 0 identisch. Im Bereich der Verdrängungsanomalie reproduziert die errechnete Kurve ein Ansteigen von Dc11(T)/c11 0, aber die Abweichung nimmt mit sinkender Temperatur zu. Gemessen an den durchgeführten Approximationen innerhalb der Modellbetrachtung ist die Übereinstimmung aber beachtlich. Der prototypische Einkristall #3S weist größere und schärfere Schallanomalien als die Einkristalle #1,2Nu auf, ist aber für m+SR-Messungen viel zu klein. Mit dem Wert von -7,9 x 10-4 für den Proportionalitätsfaktor lässt sich in umgekehrter Weise zum Vorgehen bei den Einkristallen #1,2Nu die an #3S gemessenen Kurve von Dc11(T)/c11 0analysieren. Das Ergebnis für a1(T) zeigt, dass sich im gesamten Probenvolumen von #3S die A-Phase entwickelt und ihre Verdrängung durch die Supraleitung vollständig und quasi homogen erfolgt. Verdrängt die Supraleitung die A-Phase, müssen der A-Phasenordnungsparameter und die inneren magnetischen Felder, die anzeigen, dass die A-Phase vorliegt, wieder verschwinden. Die Relaxationsrate S1 der Komponente im Signal, die mit der A-Phase verknüpft wird, kann als Maß für den Ordnungsparameter betrachtet werden. In den Einkristallen #1,2Nu zeigt die Temperaturabhängigkeit S1(T) einen Bruch in ihrem Verhalten, wenn die zügige Abnahme von a1(T) aufgrund der Verdrängung der A-Phase einsetzt: Sie geht für sinkende Temperatur in ein Regime eines deutlich abgeschwächten Anstiegs über. Dies wurde im Bild einer inhomogenen Entwicklung der Phasen als Folge eines Nettoeffekts diskutiert, zu dem Probenbereiche beitragen, in denen die A-Phase kurz davor steht, von der Supraleitung verdrängt zu werden und deshalb der A-Phasenordnungsparameter und einhergehend die inneren magnetischen Felder nicht mehr zunehmen oder sogar zurückgehen. Um ein solches Verhalten zu verifizieren, braucht es Messungen an Einkristallen mit scharfen Phasenanomalien und einem breiteren Temperaturgebiet, auf dem die A-Phase bei B = 0 existiert. Aufgrund der Konkurrenz der Wechselwirkungen, an denen die f-Elektronen partizipieren, lässt sich im CeCu6-xAux-System durch Variation der Konzentration x ein Übergang zwischen einem magnetischen und einem nichtmagnetischen Grundzustand induzieren. Auf die Nähe zum T=0-Phasenübergang werden in CeCu5,9Au0,1 die Abweichungen vom Fermiflüssigkeitsverhalten, das in der spezifischen Wärme, der magnetischen Suszeptibilität und dem elektrischen Widerstand von CeCu6 näherungsweise beobachtbar ist, zurückgeführt. In den vergleichenden Messungen der longitudinalen elastischen Konstanten an CeCu5,9Au0,1 und CeCu6 traten erst unterhalb von 1 K Unterschiede für die beiden Konzentrationen auf. Die Übereinstimmung im globalen Verhalten legte nahe, dass auch im Fall von CeCu5,9Au0,1 die Schalleffekte durch die Grüneisenparameterkopplung beschreibbar sind. In der Grüneisenparameterformel folgt die adiabatische elastische Konstante der Temperaturabhängigkeit des elektronischen Beitrags zur Inneren Energie mit den richtungsabhängigen Grüneisenparametern als Proportionalitätskonstanten. Da die beobachteten Unterschiede klein sind, ist es umso erstaunlicher, dass sie nicht vollständig durch die Unterschiede in der Änderung der Inneren Energie erfasst werden können. Zudem sind sie moden- und damit richtungsabhängig. Diese Ergebnisse wurden im Bild einer Temperaturabhängigkeit der betroffenen Grüneisenparameter diskutiert.

Download full text files

  • Dissertation_Finsterbusch.pdf
    deu

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Doris Finsterbusch
URN:urn:nbn:de:hebis:30-47798
Place of publication:Frankfurt am Main
Referee:Bruno Lüthi, Wolf AßmusGND
Advisor:Bruno Lüthi
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2007/08/23
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/04/01
Release Date:2007/08/23
Page Number:309
First Page:1
Last Page:301
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:316278661
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG