Auger-Zerfall auf raumfesten CO-Molekülen

  • In der vorliegenden Diplomarbeit wird die Auger-Ionisation des Kohlenstoffmonooxidmoleküls CO in linear und zirkular polarisierter Röntgenstrahlung untersucht. Die Strahlung liegt im Bereich des Vakuumultraviolett (VUV) bei 305eV und wird durch ein Elektronensynchrotron, die Advanced Light Source des Lawrence Berkeley National Laboratory, erzeugt. Die Energie eines Photons führt zur Photoionisation eines Elektrons aus dem 1s-Orbital des Kohlenstoffs. Das im darauf folgenden Augerzerfall ausgesandte Elektron und die jeweils einfach positiv geladenen Fragmente aus der Coulombexplosion des CO++-Molekülions werden hinsichtlich ihrer Impulse vermessen. Zur Impulsmessung wurde die in unserer Arbeitsgruppe laufend weiter entwickelte Methode COLTRIMS (COld Target Recoil Ion Momentum Spectroscopy) eingesetzt. Der experimentelle Aufbau gestattet prinzipiell die Messung aller bei der Ionisation freigesetzten geladenen Teilchen. Um die hochenergetischen Auger-Elektronen mit hinreichender Auflösung zu erfassen, wurde erstmals bei einer solchen Apparatur ein Abbremsfeld eingebaut. Dadurch werden allerdings die niederenergetischen Photoelektronen unterdrückt. Die Meßmethode erlaubt eine Rekonstruktion der Impulse der Fragmente zum Zeitpunkt der Ionisation und läßt Rückschlüsse auf die Dynamik der Ionisation zu. Die Winkelverteilung der Augerelektronen wird in Abhängigkeit von der Polarisation beobachtet. Die Verteilungen sowohl des Polar- als auch des Azimutwinkels zur rekonstruierten Molekülachse zeigen keine ausgeprägte Abhängigkeit von der Polarisation. Dies rehabilitiert das von Guillemin et al. in Frage gestellte Zweistufenmodell des Augerzerfalls. Durch Selektion der kinetischen Energie der Augerelektronen und der bei der Coulombexplosion freigesetzten kinetischen Energie (KER) gelingt es, kurzlebige Molekülionen nach Drehimpulszuständen zu trennen und deutlich anisotrope Emissionsmuster zu beobachten. Die Muster lassen sich qualitativ erklären. Langlebigere Molekülionen zeigen ein scharfe Vibrationlinien im KER-Spektrum. Das Vibrationsspektrum wird analysiert und in Bezug zu vorangehenden Messungen gesetzt. Durch die koinzidente Meßmethode ist es möglich, bislang nicht beobachtbare Vibrationslinien zu identifizieren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Balser
URN:urn:nbn:de:hebis:30-47229
Referee:Reinhard DörnerORCiDGND, Horst Schmidt-BöckingGND
Advisor:Reinhard Dörner
Document Type:diplomthesis
Language:German
Year of Completion:2007
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2007/08/09
HeBIS-PPN:189557656
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht