Charakterisierung und erster experimenteller Einsatz von ortsauflösenden, energiedispersiven Germanium-Detektoren zur Präzisionsspektroskopie an schweren Ionen

Characterisation and first experimental results from position sensitive and energy dispesive germanium detector systems for precision x-ray spectroscopy with highly charged ions

  • Motiviert durch aktuelle atomphysikalische Fragestellungen zur Struktur und Dynamik der Materie im Bereich hochgeladener Schwerionen entstand der Bedarf zur Weiterentwicklung bestehender und zur Entwicklung neuartiger ortsauflösender Detektorsysteme. Die Untersuchung der Struktur ist hauptsächlich durch die hochauflösende spektroskopische Vermessung einzelner Energieniveaus der atomaren Hülle bestimmt und liefert grundlegende Einblicke in den atomaren Aufbau. Dabei stellen diese Resultate gerade bei schweren hochgeladenen Ionen eine exzellente Testmöglichkeit der QED in extrem starken Feldern dar. Die Dynamik der Materie zeigt sich in der Teilchendynamik (hier der Atomhülle) in extrem starken und extrem kurzen elektromagnetischen Feldern, wie sie bei Ion-Atom-Stößen auftreten. Beobachtet werden können hier vor allem Teilchen und Photonen-Polarisationsphänomene. Solche Polarisationseffekte sind jedoch nicht auf das Gebiet der atomaren Hülle beschränkt. Als ein Beispiel sei die Untersuchung laserbeschleunigter Teilchen genannt. Hier kann die Polarimetrie von Röntgenstrahlung, die durch Thomson-Streuung optischer Photonen an den zuvor auf relativistische Geschwindigkeiten beschleunigten Teilchen erzeugt wird, Aufschluß über die Natur des Beschleunigungsprozesses geben. Einblick in die lineare Polarisation der Röntgenphotonen im für unsere Arbeit interessanten Energiebereich von einigen 10 keV bis einigen 100 keV können mit Compton-Polarimetern gewonnen werden. Kommerziell sind Detektorsysteme, die eine ausreichende Granularität in Kombination mit hinreichender Detektordicke besitzen, um hohe Nachweiseffizienzen zu erreichen, jedoch nicht verfügbar. Im Rahmen der vorgelegten Arbeit, die sich mit Techniken der hochaufgelösten Röntgenspektroskopie und der Röntgenpolarimetrie an hochgeladenen Schwerionen befasst, wurden vielfältige Arbeiten an und mit orts-, zeit- und energieauflösenden planaren Ge(i)-Detektorsystemen durchgeführt. Wesentliches Ziel der Arbeit war es, ein zweidimensional ortsauflösendes planares Halbleiterdetektorsystem, das für den Einsatz im Kristallspektrometer FOCAL und als Compton-Polarimeter angepasst ist, bereitzustellen. Hierzu wurde ein 2D-µ-Streifendetektorsystem aufgebaut, das eine Ortsauflösung von 250µm, bzw. 1167µm in orthogonaler Richtung, bei einer Detektordicke von 11mm und eine Energieauflösung von etwa 2 keV für jeden einzelnen Streifen bei 60 keV Photonenenergie gewährleistet. Durch Messungen an der Synchrotronquelle ESRF, Grenoble (Frankreich), wurde die Eignung des Systems als bildgebendes Element im FOCAL Kristallspektrometer bei einer Photonenenergie von 60 keV und als Compton-Polarimeter bei einer Photonenenergie von 210 keV untersucht. Der große Vorteil in FOCAL ein ortsauflösendes Detektorsystem einzusetzen, liegt darin, dass alle interessanten Beugungswinkel simultan beobachtet werden können. Im herkömmlichen Ansatz würde man mit einer einfachen Diode und einem Kollimator den Bereich abfahren. Wegen der geringen Ereignisrate und dem hohen Untergrund ist dies jedoch nicht praktikabel. Herkömmliche Systeme wie CCD oder Gasdetektoren haben nicht die nötige Effizienz oder eine zu hohe Dunkelrate. Zur Untersuchung der für FOCAL wichtigen Eigenschaften wurden mehrere Positionen auf dem Detektor bei niedriger Energie mit einem fein kollimierten Photonenstrahl (50 x 50 µm2) gescannt. Neben der guten Energieauflösung des Detektorsystems von durchschnittlich 2.2 keV bei 60 keV, zeigen die Ergebnisse das homogene Verhalten der Detektoreffizienz, welche essentiell für den spektographischen Einsatz in FOCAL ist. Es konnten keine Hinweise auf messbare Ladungsverluste im Bereich des aktiven Detektorvolumens festgestellt werden. Ebenso konnte die Multiplizität (Anzahl der Streifen einer Detektorseite, die auf ein Ereignis reagieren), mit der ein Photon nachgewiesen wird, eindeutig mit der Strukturierung der Kontakte auf der Kristalloberfläche in Verbindung gebracht werden. Es stellte sich heraus, dass die Ereignisse der Multiplizität zwei dazu verwendet werden können um Ortsauflösungen deutlich unterhalb einer Streifenbreite zu erreichen. Diese Methode kann jedoch nur auf eine größere Anzahl von Ereignissen angewendet werden, nicht jedoch auf einzelne Ereignisse. Um das 2D-Ge(i)-µ-Streifendetektorsystem auf seine Eignung als Compton-Polarimeter zu testen, wurden Daten mit einem nahezu vollständig linear polarisierten Photonenstrahl (98% linear polarisiert) bei einer Energie von 210 keV aufgenommen. Die Daten zeigen die erwartete Dipol-ähnliche Asymmetrie im Ortsbild und dienen als Kalibrationsgrundlage zur Interpretation zukünftiger Experimente zur Polarimetrie in diesem Energiebereich. Parallel hierzu wurde an Simulationsprogrammen auf Basis der etablierten Monte Carlo Software EGS4 gearbeitet. Hiermit wurden Vorhersagen bezüglich des Nachweisverhaltens des Detektors auf linear polarisierte Röntgenstahlung gemacht. Ferner wurde für ein 4x4-Pixel-Polarimeter, das bei der ersten Bestimmung der linearen Polarisation der K-REC Strahlung von U92+ am Speichering ESR der GSI eingesetzt wurde, im Rahmen der Datenanalyse mit den auf EGS4-basierenden Programmen die Detektoreffizienz für linear polarisierte Strahlung einer bestimmten Energie simuliert. Mit diesen Simulationsergebnissen konnten die selbstentwickelten Methoden zur Korrektur der Nachweiswahrscheinlichkeit eines Compton-Ereignisses als Funktion des Wechselwirkungspunkts innerhalb des Detektorkristalls und der Energie erfolgreich verifiziert werden. Die detektorbezogenen Resultate dieser Arbeit fanden ihre erste Anwendung in der FOCAL-Spektrometer Strahlzeit 2006, deren genaue Beschreibung jedoch über den Umfang dieser Arbeit hinausgeht. Ebenso flossen die Erfahrungen, die mit den Detektorsystemen, im speziellen dem 2D-Ge(i)-µ-Streifendetektor, gemacht wurden in die Realisierung eines Si(Li)-Detektors mit 32+32 Streifen zur Compton-Polarimetrie bei niedrigeren Energien (ab 60 keV) ein, der gegenwärtig in ersten Experimenten am ESR eingesetzt wird.
  • To meet the demands of state-of-the-art atomic physics with highly charged ions at storage rings a planar germanium detector system with position, time and energy resolution has been developed, tested and applied. The detector system is used for spectroscopy and polarimetry experiments in the hard x-ray regime.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Uwe SpillmannORCiDGND
URN:urn:nbn:de:hebis:30-62518
Referee:Thomas StöhlkerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/02/27
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/02/16
Release Date:2009/02/27
Tag:detector; polarimetry; spectroscopy
GND Keyword:Detektor; Polarimetrie; Spektroskopie
HeBIS-PPN:209665955
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:30.00.00 ATOMIC AND MOLECULAR PHYSICS / 32.00.00 Atomic properties and interactions with photons (for quantum chaos, see 05.45.Mt; for standards of calibration, see 06.20.fb; for relativistic and quantum electrodynamic effects, see 31.30.J-) / 32.30.-r Atomic spectra (see also 78.47.J- Ultrafast pump/probe spectroscopy in condensed matter and 82.53.Kp Coherent spectroscopy of atoms and molecules in physical chemistry and chemical physics) / 32.30.Rj X-ray spectra
Licence (German):License LogoDeutsches Urheberrecht