Synthese und Einfluss von fluorierten Indolen-, 7-N-Purin und 9-N-Deazapurin-Nukleosiden auf die RNA Stabilität

  • Im Rahmen dieser Doktorarbeit wurden modifizierte Nukleoside synthetisiert, um ihren Einfluss auf die Stabilität von RNA-Duplexen zu untersuchen. Bei den fluorierten Benzimidazol-Nukleosidanaloga handelt es sich um universelle Basen, die bei der Basenpaarung nicht zwischen den vier natürlichen Nukleosiden unterscheiden können. Die dabei auftretende Destabilisierung der RNA-Duplexe sollte durch die Änderung physikalisch-chemischer Eigenschaften vermindert werden. Durch die Synthese der fluorierten Indol-Nukleosidanaloga mit denselben Fluoratompositionen sollte nachgewiesen werden, welche Rolle ein ausfallendes Stickstoffatom im Fünfring-System spielt. Weitere Untersuchungen wurden so entwickelt, dass die zwei spC-F in 4,6DFBI wie auch in 4,6DFI mit Stickstoffatomen getauscht wurden. So wurde noch eine neue Serie Nukleosidanaloga synthetisiert (Abbildung 9.2). Schließlich wurde noch 1-Desoxy-D-ribofuranose AS als absischer Baustein synthetisiert. Die Synthese der Indol- und 9-Deazapurin-Nukleosidanaloga wurde über eine Glycsilierungsreaktion mit geeignet geschützter Deoxyribose durchgeführt. Dies wurde über vier Stufen, ohne Aufreinigung, aus Deoxyribose synthetisiert. Die entsprechenden Deoxy-nukleoside wurden danach in fünf Schritten zu Ribo-nukleosiden transformiert. Nach der Entschützung von Toluoyl-Gruppen wurden die 5´- und 3´-OH Gruppen sukzessiv geschützt. Nach simultaner 5´-OH Entschützung und 3´-OMs Eliminierung, wurden die gewünschten Ribonukleoside durch katalytische Dihydroxilierung erhalten. Die Darstellung der Verbindung 7NP erfolgte über die Silyl-Hilbert-Johnson-Reaktion. Der abasische Baustein AS wurde ausgehend von 2,3,5-Tri-O-benzyl-ribofuranose durch Dehydroxylierung und anschließende Entschützung erreicht. Von allen Nukleosiden gelang es Kristalle aus Wasser oder Methanol zu erhalten und röntgenkristallographisch zu untersuchen. Die Kristallpackungen zeigten eine sehr interessante Anordnung der Moleküle. Alle Fluorindol-Nukleoside mit Ausnahme von 7-N-Purin-Nukleosid 7NP zeigten nicht die für aromatische Systeme normale Fischgräten-Struktur, sondern eine Anordnung, in der die Moleküle gegenüberliegen. Die Kristallpackung besteht abwechselnd aus hydrophilen und lipophilen Schichten. Die hydrophilen Schichten bestehen aus den Zuckeruntereinheiten und die lipophilen aus den Fluoraromaten. Die Zucker sind durch Wasserstoffbrücken miteinander verbunden. Für die Orientierung der Moleküle zueinander sind aber die Fluoratome verantwortlich. In der Kristallpackung von 7-Fluorindol-Nukleosid 7FI kann ein Fluor-Wasserstoff-Abstand von nur 230 pm detektiert werden. Dies ist deutlich kürzer als die Summe der van-der-Waals Radien von Fluor und Wasserstoff von 2,55 Å. Der Abstand wird zwischen dem Fluor des einen Nukleosids und einem Wasserstoff eines gegenüberliegenden Nukleosids gemessen. Der Abstand von 2,30 Å ist einer der kürzesten jemals in Kristallen gemessenen F-H Abstände des Typs Csp²-F...H-Csp². Bedingt durch diesen kurzen Abstand kann von einer F...H Wasserstoffbrücke gesprochen werden. Auf der anderen Seite in der Kristallstruktur von 4-Fluorindol-Nukleosid 4FI konnte ein F-H Abstand von 2,69 Å nachgewiesen werden, welcher deutlich länger als die Summe der van-der-Waals Radien von Fluor und Wasserstoff ist. Die Nukleoside wurden auf ihre Lipophilie hin untersucht. Zu diesem Zweck wurden Octanol-Wasser Verteilungskoeffizienten der Nukleoside gemessen. Die fluorierten Nukleoside zeigten im Gegensatz zu den nichtfluorierten Nukleosiden eine deutlich größere Lipophilie. Nach Umsetzung der Nukleoside zu den Phosphoramiditen konnten diese kupplungsfähigen Monomere in den RNA-Festphasensynthesen eingesetzt und in RNA 12mere eingebaut werden. Um den Einfluss der aromatischen Fluorosubstitutionen auf die thermodynamische Stabilität von RNA-Duplexen zu untersuchen, wurden UV/VIS- und CD- spektroskopische Messungen an monomodifizierten RNA 12meren durchgeführt. Aus den erhaltenen Schmelzkurven wurden die Schmelzpunkte bestimmt (Abbildung 9.3) und die thermodynamischen Daten ausgerechnet. Die Anwendung hydrophober, Fluorsubstituierter Nukleobasen führte im Fall der fluorierten Indol-Nukleoside zu Destabilisierung im Vergleich mit natürlichen Basenpaaren. Aus den folgenden Resultaten lässt sich zusammenfassen: 1. Position der Fluoratom in fluorierten Indole spielt eine wesentliche Rolle für die Stabilität des RNA-Duplex 2. 6FI bildet die stabilste Basenpaaren mit natürlichen Basen. 3. Basenpaarung von 4FI trägt eine deutlich höhere Destabilisierung. Für diese Modifikation wurden auch die längsten Abstandwerte zwischen C-F…H in der Kristallpackung gemessen. (Die Vermutung liegt nahe, dass diese Base sich außerhalb des Duplex befindet). 4. Alle Fluorindol-Basenanaloga zeigen die Tendenz zur Paarung mit Adenosin. 5. Bei 4,6DFI handelt sich um universelle Base. Um noch weniger destabilisierende universelle Basen zu finden, wurde das Forschungsfeld mit Methoden aus dem Bereich der strukturellen Bioinformatik, Molekül-dynamiksimulationen und freie Energie-Rechnungen ausgeweitet. Resultierende Simulationen führten zu zwei neuen Basen: 7NP als Analogon zu 4,6DFBI und 9DP als Analogon zu 4,6DFI (siehe Kapitel 8). Theoretische Rechnungen ließen sich bestätigen durch experimentelle Ergebnisse Die so entstandene Serie von Purin-Basenanaloga hat uns gezeigt, dass der Austausch von Fluoratomen durch Stickstoffatome stabilisierende Effekte bringt. Die chemischen Änderungen beeinflussen die physikalischen Eigenschaften, welche dadurch Stabilisierung oder Destabilisierung des RNA-Duuplex dirigieren. In Abbildung 9.5 befinden sich ausgerechnete Dipolmomente. Somit können wir für diese Serie folgendes resümieren: * 4,6FI als universelles Base Analogon zu 4,6DFBI zeigt geringere destabilisierende Effekte auf den 12mer RNA-Duplex. * Umtausch von Fluoratomen in den beiden Basen (4,6DFI und 4,6DFBI) resultiert in deutlich besserer Basenpaarung. * Auserrechnete thermodynamische Parametern (von gemessenen Tm-Werten) wurde ersichtlicht, dass höhere Tm-Werte durch geringere Destabilisierung aus Solvatation resultieren, nicht aus erhöhten Stacking Effekten des RNA-Duplex.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jelena Bozilovic
URN:urn:nbn:de:hebis:30-71199
Referee:Joachim W. EngelsORCiDGND
Advisor:Joachim W. Engels
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/01/26
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2010/01/26
GND Keyword:RNS; Stabilität; Indol; Fluorierung; Purin; Purinnucleoside
Page Number:294
HeBIS-PPN:222495057
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht