Structure and dynamics of molecules and molecular aggregates in gas phase studied by femtosecond spectroscopy

Struktur und Dynamik von Molekülen und molekularen Clustern in der Gasphase untersucht mit Femtosekundenspektroskopie

  • Large amplitude intramolecular motions in non-rigid molecules are a fundamental issue in chemistry and biology. The conventional approaches for study these motions by far-infrared and microwave spectroscopy are not applicable when the molecule is non-polar. Therefore, in the current thesis an alternative approach for the investigation of large amplitude intramolecular motions was developed and tested. This new method is based on femtosecond rotational degenerate four-wave mixing spectroscopy (fs DFWM), which is a particular implementation of rotational coherence spectroscopy. The method was successfully applied for the investigation of pseudorotation in pyrrolidine and the ring-puckering vibration in cyclopentene. Another important subject is the photophysics of molecules and molecular clusters which have an ultrashort lifetime of their electronically excited state (photoreactivity). These ultrashort lifetimes often represent a protective mechanism causing photostability. The photoreactivity is usually the manifestation either of an “elementary” reaction, such as proton or electron transfer, which occurs in the excited state or of a fast non-radiative deactivation processes, such as internal conversion via conical intersection of the electronically excited and ground state. Due to a short-lived excited state, the conventional vibrational spectroscopic methods, such as IR depletion detected by resonance two-photon ionization spectroscopy (IR/R2PI), are not applicable for the structural investigation of these systems. Therefore, new approach, termed IR depletion detected by multiphoton ionization with femtosecond laser pulses (IR/fsMPI), was developed for studying the structure of photoreactive microsolvated molecules. The IR/fsMPI technique was applied for investigating the clusters of 1H-pyrrolo[3,2-h]quinoline with water/methanol as well as adenine- and 9-methyl-adenine-hydrates. In addition, the excited state dynamics of bifunctional azaaromatic molecule 7-(2'-pyridyl)indole (7PyIn) was studied by femtosecond pump-probe resonance excitation multiphoton ionization technique (fs REMPI). Under electronic excitation of this molecule a fast proton transfer (phototautomerization) takes place, which is followed by radiationless excited state deactivation process. The fs REMPI spectra lead to the conclusion that the phototautomerization in 7PyIn is coupled with a twisting of the molecule, and that the twisting provides an efficient channel for ultrafast radiationless excited state deactivation. This pattern of excited-state tautomerization/deactivation might be quite general.
  • Ultraschnelle Prozesse sind oft Bestandteil der molekularen Dynamik in Molekülen und molekaren Aggregaten und in der Regel mit Reaktionen verbunden. Die vorliegende Arbeit befasst sich mit zwei Grundtypen solcher Prozessen: 1. Schwingungen mit großer Amplidude im elektronischen Grundzustand bestimmter Moleküle. Diese sind oft Minimumsenergiepfade für konformationelle Änderungen. Als Beispiel wurde die Pseudorotation in Pyrrolidin, einem aliphatischen, fünfgliedrigen Ring untersucht, welcher in wichtigen molekularen Bausteinen der Biochemie (Ribose) eine wichtige Rolle spielt. Die Dynamik wurde mit der Femtosekunden-Vierwellenmischmethode untersucht. Mit ihr werden Rotationskohärenzeffekte zeitaufgelöst gemessen und durch modellbasierte Simulationen analysiert. Damit lassen sich die Energie und Struktur entlang solcher Schwingungen genauestens untersuchen. Ein zweites Beispiel war die Puckerbewegung in Cyclopenten, bei der ein Teil des Rings aus der Ebene schwingt. Hier ergab ein Vergleich mit sehr genauen Mikrowellendaten eine hervorragende Übereinstimmung der Rotationskonstanten. 2. Relaxationsprozesse in elektronisch angeregten Zuständen von isolierten und mikrosolvatierten Molekülen. Diese laufen oft im Subpikosekundenbereich ab. Beispiele sind Protonen- und Elektronentransfer, schnelle internal conversion, Kurvenüberkreuzungen (S1 oder Sn mit S0) etc. Oft spielt das Lösungsmittel eine entscheidende Rolle. Um diese ultrakurzlebigen Zustände zu charakterisieren und die dabei ablaufenden Prozesse aus molekularer Sicht aufzuklären, wurden ultrakalte Modellmoleküle bzw. Aggregate mit einem in dieser Arbeit erstmals angewandten Doppelresonanzverfahren (IR/fsMPI) untersucht. Mit ihr können die O-H, und N-H Steckschwingungen der Molekülen selbst bei extrem kleinen Lebensdauern der angeregten Zustände analysiert und daraus die Struktur der Moleküle bzw. der intermolekularen Aggregate abgeleitet werden. Gleichzeitig kann mit der so genannten Pump-Probe Spektroskopie die intramolekulare Dynamik in Echtzeit abgefragt werden. Modellsysteme waren bifunktionale Azoaromaten isoliert bzw. mikrosolvatisiert, die nach Anregung eine ultraschnelle Tautomeriereaktion zeigen. Diese schnellen Relaxationsprozesse werden als Hauptgrund für die hohe Photostabilität von DNA diskutiert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maksim KunitskiORCiDGND
URN:urn:nbn:de:hebis:30-78905
Referee:Bernd BrutschyGND, Josef WachtveitlORCiDGND
Advisor:Bernd Brutschy
Document Type:Doctoral Thesis
Language:English
Year of Completion:2009
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/06/22
Release Date:2010/09/09
Tag:IR/fsMPI; Pseudorotation; pump-probe spectroscopy; rotational coherence spectroscopy
GND Keyword:Femtosekundenspektroskopie; DFWM; Pyrrolidin; Cyclopenten; Adenin; Gasphase; Molekülcluster; ESIPT
Page Number:175
HeBIS-PPN:226707482
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
PACS-Classification:40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.62.-b Laser applications / 42.62.Fi Laser spectroscopy
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.30.-b Specific chemical reactions; reaction mechanisms / 82.30.Qt Isomerization and rearrangement
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.30.-b Specific chemical reactions; reaction mechanisms / 82.30.Rs Hydrogen bonding, hydrophilic effects
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.50.-m Photochemistry (for single molecule photochemistry, see 82.37.Vb); Optical spectroscopy in atomic and molecular physics, see 32.30.-r and 33.20.-t; Optical spectroscopy in condensed matter, see 78.35.+c, 78.40.-q, and 78.47.+p
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.53.-k Femtochemistry [see also 78.47.J- Ultrafast pump/probe spectroscopy (<1 psec) in condensed matter; 42.65.Re Ultrafast processes; optical generation and pulse compression in nonlinear optics]
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.53.-k Femtochemistry [see also 78.47.J- Ultrafast pump/probe spectroscopy (<1 psec) in condensed matter; 42.65.Re Ultrafast processes; optical generation and pulse compression in nonlinear optics] / 82.53.Kp Coherent spectroscopy of atoms and molecules
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.53.-k Femtochemistry [see also 78.47.J- Ultrafast pump/probe spectroscopy (<1 psec) in condensed matter; 42.65.Re Ultrafast processes; optical generation and pulse compression in nonlinear optics] / 82.53.Ps Femtosecond probing of biological molecules
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht