Untersuchung von Korrelationseffekten in der Doppelphotoemission von normal- und supraleitendem Blei

  • Im Rahmen dieser Arbeit wurde für die erstmalige Untersuchung der Doppelphotoemission von supraleitenden Materialien eine neue Messapparatur aufgebaut. Mit ihr lassen sich auf eine neue Weise Korrelationseffekte zwischen zwei Elektronen untersuchen, denn beide werden für jedes Reaktionsereignis mit ihrem vollständigen Impulsvektor aufgezeichnet. Die Apparatur kann daher für einen direkten Nachweis der Cooperpaarung in Supraleitern verwendet werden. Dazu wurden ein speziell für diesen Zweck angepasstes Spektrometer, Vakuumsystem und Probenhalter konstruiert. Ein mehrfach verbessertes Vakuumsystem sorgte dafür, dass eine Bleioberfläche über einen Zeitraum von mindestens 15 Stunden nach einer Reinigung gemessen werden konnte. Das Spektrometer erlaubte die koinzidente Messung von Elektronen über einen großen Raumwinkelbereich mit ausschließlich elektrischen Feldern. Dadurch war es auch im supraleitenden Zustand möglich, die Trajektorien der Elektronen zu berechnen. Die Energieauflösung für jedes Elektron lag zwischen 1/30 und 1/50, je nach untersuchtem Emissionswinkel. Ein eigens entwickelter Probenhalter erlaubte es, eine nur von einer Seite thermisch abgeschirmte Probe auf eine Temperatur von 4,5 K zu kühlen. Die Experimente wurden an einer Beamline des Berliner Synchrotrons BESSY durchgeführt. Von entscheidender Bedeutung für die Auswertung der Daten ist die Qualität der Pulserkennungsroutine. Sie bestimmt die Totzeit der Messapparatur, das heisst wie nahe zwei Elektronen zeitlich und räumlich beieinander liegen dürfen, um noch detektiert zu werden. Sie beeinflusst somit die Beobachtung erheblich. In den als digitalisierte Pulse aufgenommen Rohdaten besteht die Schwierigkeit darin, zwei übereinander liegende Signale als solche zu erkennen und die richtige Zeit beider Signale zu bestimmten. Dies wurde erheblich verbessert, indem ein in Vorabeiten simulierter Doppelpulsalgorithmus modifiziert und erstmalig verwendet wurde. In der Folge konnte die Totzeit deutlich verringert und daher bis zu 20% mehr Doppelereignisse gefunden werden. Darüber hinaus ließen sich Fehler bei der Zeiterkennung nahe aufeinander folgender Pulse korrigieren. Ein in diesem Zusammenhang entwickeltes Programm erzeugte durch die Addition von gemessenen Einzelpulsen künstliche Doppelereignisse mit beliebiger Abstandsverteilung und erlaubte so erstmals eine exakte Simulation der Detektortotzeit mit verschiedenen Pulserkennungsalgorithmen. Neben den Koinzidenzereignissen wurden auch die Ergebnisse der gewöhnlichen Photoemission untersucht und mit Bandstrukturrechnungen verglichen. Aufgrund der Messmethode wurde keine Vorauswahl bezüglich des Emissionswinkels oder der kinetischen Energie getroffen. Die Ergebnisse der Fermiflächen stimmen innerhalb der erreichten Auflösung mit den theoretischen Vorhersagen überein. Ebenso konnten die Strukturen in den Parallelimpulsspektren der Elektronen, die aus lokalisierten Energieniveaus emittiert wurden, mit der Interferenz der ausgehenden Wellenfunktionen erklärt werden. Eine Simulation dieses Effekts lieferte trotz der vergleichsweise sehr niedrigen Elektronenenergien eine gute Übereinstimmung der wesentlichen Merkmale. Es wurden Doppelphotoemissionspektren von Blei bei verschiedenen Photonenenergien im Bereich von 21,22 eV bis 40 aufgenommen. Dabei konnten verschiedene Emissionskanäle identifiziert werden. Das Korrelationsloch ist ein sehr grundlegender Effekt, der aufgrund der Coulombabstoßung und des Pauli-Prinzips auftritt und daher bei allen Metallen vorkommt. Betrachtet man das Korrelationsloch im Impulsraum, so führt es dazu, dass zwei gleichzeitig emittierte Elektronen keine ähnlichen Impulsvektoren besitzen dürfen. Durch die verbesserten Pulserkennungsalgorithmen war es möglich, das Korrelationsloch zu untersuchen und über einen weiten Energiebereich zu vermessen. Es zeigte sich wie erwartet als Verarmungszone in der Impulsverteilung eines Elektrons um den Impuls eines zweiten. Ein solcher Effekt ist mit einem einzelnen Detektor sehr schwer zu messen, da die Totzeit die gleiche Auswirkung auf die Spektren hat. Durch eine Simulation konnte ihr Einfluss in jedem Spektrum herausgefunden und so beide Effekte voneinander getrennt werden. Sie stehen damit für einen Vergleich mit einer noch zu entwickelnden theoretischen Vorhersage zur Verfügung. Aufgrund der bei Blei sehr nahe an der Fermikante liegenden, lokalisierten Energieniveaus konnte der Augerzerfall aus dem Valenzband identifiziert und untersucht werden. Korrelationseffekte zwischen den beiden Elektronen spielten aufgrund des sehr breiten Valenzbandes wie erwartet eine untergeordnete Rolle. Dies ließ sich nachweisen, indem die Energieverteilung durch eine Selbstfaltung der Valenzbandzustandsdichte beschrieben wurde und die Winkelverteilung der Augerelektronen keine Beeinflussung durch die Emissionsrichtung der Photoelektronen zeigte. Beide Beobachtungen deuten auf einen vollständig unabhängigen Emissionsprozess der beiden Elektronen hin. Überraschenderweise zeigte sich aber eine Energieverschiebung des Photoelektrons, abhängig von der kinetischen Energie des Augerelektrons. Dieser in der Gasphase als Post-Collision-Interaction bekannte Effekt sollte aufgrund der schnellen Abschirmung der im Festkörper zurückbleibenden Löcher nicht auftauchen. Die Ursache für die Energieverschiebung ist noch unbekannt. Für die Identifizierung der Emission von Cooperpaaren wurden Messungen oberhalb und unterhalb der Sprungtemperatur bei verschiedenen Photonenenergien zwischen 20 eV und 40 eV durchgeführt. Verschiedene Spektren wurde nach der Signatur des Prozesses untersucht. Aufgrund der geringen Statistik konnte er nicht identifiziert werden. Demnach konnte auch die theoretische Vorhersage nicht widerlegt werden. Da dieses Experiment aus technischer Sicht äußerst herausfordernd ist, war die Untersuchung von Blei, als einfach zu präparierendes Material mit hoher Sprungtemperatur, naheliegend. Es stellte sich jedoch durch die Auswertung heraus, dass es im Hinblick auf die untersuchte Fragestellung einen wesentlichen Nachteil besitzt. Die Hauptintensität befindet sich im Gegensatz zu Kupfer für alle hier verwendeten Photonenenergien bei niedrigen Elektronenenergien, so dass nur wenige Ereignisse in dem für die Cooperpaaremission interessanten Energiefenster liegen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Robert Wallauer
URN:urn:nbn:de:hebis:30:3-244140
Referee:Reinhard DörnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/03/14
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/03/05
Release Date:2012/03/14
Page Number:146
HeBIS-PPN:291406556
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht