Regulation der Sphingosinkinase-1 durch G alpha q

  • Innerhalb der vorliegenden Arbeit wurden verschiedene Teilaspekte des S1P-Signalsystems näher untersucht. Der erste Teil der Arbeit geht der Frage nach, welche Störungen das Ausschalten der S1P-Lyase in der Ca2+-Homöostase verursacht. Die Messung der zellulären Lipidkonzentrationen ergab in Sgpl1-/--MEFs einen sechsfach höherer Wert für S1P und einen doppelt so hohen Wert für Sphingosin als in den Sgpl1+/+-MEFs. [Ca2+]i wurde an Einzelzellen mit Hilfe des Proteinfarbstoffs Cameleon untersucht, wobei [Ca2+]i-Anstiege durch den SERCA-Inhibitor Thapsigargin induziert wurden. So konnte gezeigt werden, dass sowohl in Sgpl1+/+-MEFs als auch in Sgpl1-/--MEFs zwei verschiedene Subtypen existieren, die sich hinsichtlich Geschwindigkeit und Ausmaß des [Ca2+]i-Anstiegs unterscheiden. Die basale [Ca2+]i war im Subtyp der Sgpl1-/--MEFs mit einem schnellen und kurzen [Ca2+]i-Anstieg signifikant erhöht, während das Maximum des Thapsigargin-induzierten [Ca2+]i-Anstiegs im Subtyp der Sgpl1-/--MEFs mit einem langsamen und langen [Ca2+]i-Anstieg signifikant erhöht war. Die AUC des Zeitverlaufs nach der Stimulation mit Thapsigargin war in beiden Subtypen der Sgpl1-/--MEFs signifikant erhöht, was bedeutet, dass der Ca2+-Gehalt der Thapsigargin-sensitiven Speicher in Sgpl1-/--MEFs höher als in Wildtyp-MEFs war. Im zweiten Teil der Arbeit wurden Aspekte der Modulation des S1P-Signalsystems durch das Sphingosin-Analogon cis-4-Methylsphingosin näher untersucht. Die Messung der Lipidkonzentrationen von cis-4-Methylsphingosin und dem Phosphorylierungsprodukt cis-4-Methyl-S1P erfolgte dabei in HEK-293-Zellen und deren Überständen mittels LC-MS/MS. Hierbei wurde erstmals cis-4-Methyl-S1P im Zellkulturüberstand nachgewiesen, was bedeutet, dass cis-4-Methylsphingosin nach der intrazellulären Phosphorylierung sezerniert werden kann. Dieser Mechanismus bildet die Grundlage dafür, dass cis-4-Methylsphingosin nicht nur intrazellulär wirken, sondern ebenso wie FTY720 als S1P-Rezeptor-Modulator fungieren kann. Der dritte und umfangreichste Teil der Arbeit befasst sich mit der Regulation der SK1 durch G-Protein-gekoppelte Rezeptoren. Um die Rolle von Gαq/11-Proteinen bei der Ansteuerung der SK1 durch G-Protein-gekoppelte Rezeptoren weiter zu analysieren, wurde zunächst die Rezeptor-induzierte Translokation der SK1 in MEFs untersucht, die sowohl in Gαq als auch in seinem Homolog Gα11 doppelt defizient waren (Gαq/11 -/--MEFs). Die SK1-Translokation war nur nach Transfektion mit Gαq möglich. Um Hinweise auf die strukturellen Erfordernisse für die SK1-Ansteuerung durch Gαq zu erhalten, wurde der Einfluss verschiedener Gαq-Mutanten auf die Translokationshalbwertszeit der SK1 untersucht. So waren alle untersuchten Mutanten in der Lage, die SK1-Translokation in Gαq/11-/--MEFs zu vermitteln. Die Expression der Gαq-W263D-Mutante führte dabei zu einer signifikant verlangsamten SK1-Translokation. Die durch Gαq-T257E-vermittelte Translokation war erst nach mehreren Minuten feststellbar. Die Abhängigkeit der SK1-Translokation von Gαq wurde auf zellulärer Ebene durch Coexpression einer katalytisch inaktiven Mutante der G-Protein gekoppelter Rezeptorkinase 2 (GRK2) als Gαq-scavenger in HEK3-Zellen nachgewiesen. Dies führte zu einer vollständigen Inhibierung der Carbachol-induzierten SK1-Translokation. Hingegen führte die Überexpression der SK1 in den M3-Rezeptor exprimierenden HEK-293-Zellen zu einer reduzierten Carbachol-induzierten Aktivierung der PLCβ. Dieser Effekt war unabhängig von der katalytischen Aktivität der SK1. Daraus lässt sich schlussfolgern, dass die SK1 mit den Effektoren GRK2 und PLCβ um gemeinsame Bindungsstellen der aktivierten G-Protein Untereinheit Gαq konkurriert. Zusätzlich wurde die direkte Interaktion zwischen Gαq und SK1 auf Proteinebene mittels optischer Thermophorese nachgewiesen. Dazu wurde die humane SK1 als N-terminal getaggtes His6-MBP-Fusionsprotein exprimiert, aufgereinigt und charakterisiert. So konnte gezeigt werden, dass die mit dem Fluoreszenzfarbstoff NT647-markierte hSK1 (hSK1*) mit dem TNF Rezeptor-assoziiertem Faktor 2 (TRAF2), nicht jedoch mit dem N-terminalen Fragment des TRAF family member-associated NF-kappa-B activator (TANK) interagierte. Sowohl inaktives Gαq als auch [AlF4]--aktiviertes Gαq interagierten mit der hSK1* mit einem vergleichbaren kD-Wert. Auch mit NT-647-markiertes Gαq interagierte mit der hSK1 sowohl in der inaktiven als auch in der [AlF4]--aktivierten Form, wohingegen es nicht mit TANK oder TRAF2 interagierte. Insgesamt zeigen die erhaltenen Daten, dass die SK1 ein direktes Target von Gαq ist und sie an genau dieselben Gαq-Reste bindet, an die auch die klassischen Effektoren PLCβ, p63RhoGEF und GRK2 binden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ralf Frederik ClaasGND
URN:urn:nbn:de:hebis:30:3-252955
Referee:Holger StarkORCiDGND, Dagmar Meyer zu HeringdorfORCiDGND
Advisor:Dagmar Meyer zu Heringdorf
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/07/03
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/06/20
Release Date:2012/07/03
Tag:G alpha q; GPCR; Sphingosinkinase
Page Number:III, 114
HeBIS-PPN:303974125
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen