NMR-spektroskopische Methodenentwicklung an RNA und strukturelle Charakterisierung des transkriptionellen Adenin-RNA-Schalters
- Die Untersuchung von RNA mittels NMR-Spektroskopie hat in den letzten Jahren an Bedeutung gewonnen, weil die Zahl der neu entdeckten RNA-Funktionen, wie z.B. RNA-Schalter in Bakterien, stark gestiegen ist. Ziel dieser Arbeit war es, mithilfe der NMR-Spektroskopie einen Beitrag zum besseren Verständnis der biochemischen Prozesse, in die RNA-Moleküle involviert sein können, zu leisten.
Im ersten Teil dieser Arbeit (Kapitel 2, 3 und 4) werden zum einen die Entwicklung neuer Methoden für die RNA-Strukturbestimmung vorgestellt und zum anderen die Leistungsfähigkeit der modernen NMR-spektroskopischen Strukturaufklärung demonstriert.
Im zweiten Teil dieser Arbeit (Kapitel 5) wird die NMR-Spektroskopie zur Untersuchung der RNA-Schalter-Funktion eingesetzt. Die biologische Funktion von RNA oder Proteinen setzt oftmals eine dynamische Struktur voraus und involviert Konformationsänderungen infolge biochemischer Signalweiterleitung. Für die Charakterisierung solcher Prozesse eignet sich die NMR-Spektroskopie insbesondere gut, weil sie in Lösung unter verschiedenen Reaktionsbedingungen angewandt wer-den kann. Durch den direkten NMR-spektroskopischen Nachweis von Basenpaarungen können wichtige strukturelle Eigenschaften (Faltung, Strukturhomogenität und Dynamik) entschlüsselt und in einen Zusammenhang mit der Funktion gebracht werden.
Im Folgenden werden die einzelnen Kapitel vorgestellt.
Nachdem das erste Kapitel eine allgemeine Einleitung in die NMR-Spektroskopie, RNA-Struktur und Funktion der RNA-Schalter darstellt, folgt im Kapitel 2 die Einführung einer neuen Methode, die eine quantitative Bestimmung der Torsionswinkel alpha und zeta in RNA/DNA mittels NMR-Spektroskopie ermöglicht (Abb. 1). Sie basiert auf der Wechselwirkung zwischen dem CH-Dipol und der 31P-CSA, die von der relativen Orientierung abhängig ist. Die Methode wurde für die CH- und CH2-Gruppen in Form von zwei Pulssequenzen (2D- und 3D-G-HCP) zur Messung von insgesamt fünf kreuz-korrelierten Relaxationsraten entlang des RNA/DNA-Rückgrats optimiert. Die Funktionsfähigkeit der Methode wurde zunächst an der 14mer cUUCGg-Tetraloop RNA getestet und zur Bestimmung der Torsionswinkel alpha und zeta genutzt. Die Ergebnisse flossen in die Strukturrechnung der 14mer RNA, die im Kapitel 3 vorgestellt wird, mit ein. Des Weiteren gelang es die Anwendbarkeit der Experimente an einer größeren 27mer RNA zu demonstrieren. Die neue Methode ist deswegen von Bedeutung, weil die Winkel alpha und zeta nicht über 3J-Kopplungskonstanten gemessen werden können.
(Nozinovic, S., Richter, C., Rinnenthal, J., Fürtig, B., Duchardt-Ferner, E., Weigand, J. E., Schwalbe, H. (2010), J. Am. Chem. Soc. 132, 10318-10329.)
Im Kapitel 3 wird die NMR-spektroskopische Bestimmung der Struktur einer Model-RNA, der 14mer cUUCGg-Tetraloop RNA, vorgestellt. Die Strukturrechung wurde mit verschiedenen NMR-Datensätzen, die in der Arbeitsgruppe einschließlich dieser Doktorarbeit gesammelt wurden, durchgeführt. Zusammen mit den Ergebnissen aus dem Kapitel 2 konnte eine sehr präzise Struktur mit einem RMSD von 0,37 Å (20 Strukturen) in sehr guter Übereinstimmung mit experimentellen Daten ermittelt werden. Die gerechnete Struktur repräsentiert eine der gegenwärtig genauesten und umfassendsten Strukturbestimmungen einer RNA, bei der jeder Torsionswinkel quantitativ bestimmt wurde. Einen besonderen Höhepunkt stellt die strukturelle Analyse der 2’OH-Gruppen dar, die im anschließenden Kapitel 4 weiter vertieft wurde.
(Nozinovic, S., Fürtig, B., Jonker, H. R. A., Richter, C., Schwalbe, H. (2010), Nucleic Acids Res. 38, 683-694)
Über Jahre war bekannt, dass die Größe der 1J(C1’,H1’)- und 1J(C2’,H2’)-Kopplungskonstanten innerhalb der Ribonukleotide von der lokalen Struktur des Zuckers und der Orientierung der Nukleobase beeinflusst wird. In dieser Arbeit (Kapitel 4) wurde zum ersten Mal ein systematischer Vergleich zwischen NMR-Messungen und DFT-Rechnungen durchgeführt, der eine eindeutige Zuordnung der Hauptkonformationen des Zuckers (C3’- oder C2’-endo) und der Nukleobase (anti oder syn) anhand der 1J(C,H)-Kopplungskonstanten erlaubt. Die beschriebene Methode wurde an einer größeren 27mer RNA erfolgreich erprobt. Weiterhin wurde erstmalig entdeckt, dass zudem die Orientierung der 2’OH-Gruppe einen signifikanten Einfluss auf die 1J(C,H)-Kopplungen hat (Abb. 3). Mithilfe von NMR-Messungen und DFT-Rechnungen konnte aus 1J(C,H)-Kopplungskonstanten die Orientierung von allen 2’OH-Gruppen in der 14mer cUUCGg-Tetraloop RNA bestimmt werden. Die Methode hat den großen Vorteil, dass 2’OH-Gruppen, die aufgrund des schnellen Austauschs mit Wasser oder D2O keine NMR-Signale liefern, analysiert werden kön-nen.
(Nozinovic, S., Gupta, P., Fürtig, B., Richter, C., Tüllmann, S., Duchardt-Ferner, E., Holthausen, M. C., Schwalbe, H. (2011), Angew. Chem. Int. Ed. 50, 5397-5400)
Im Kapitel 5 wird eine NMR-spektroskopische Untersuchung an der Aptamerdomäne des Adenin-bindenden RNA-Schalters (pbuE) vorgestellt. Im Fokus der Forschung stand die Frage: Welchen Einfluss hat die Länge der P1-Helix auf die Struktur und die Ligandbindung der freien Aptamer-domäne?
Durch den Vergleich von zwei Konstrukten mit unterschiedlich langer P1-Helix war es möglich, intrinsische Scherkräfte, die durch die Ausbildung der P1-Helix in der freien Aptamerdomäne entstehen, festzustellen. Es hat sich im Konstrukt mit der verlängerten P1-Helix gezeigt, dass diese zur Destabilisierung der P3-Helix und des Schlaufenkontakts führen. Diese strukturellen Änderungen haben außerdem zur Folge, dass die Bindungsstärke des Liganden reduziert wird. Die Ergebnisse zeigen, dass ein strukturelles Gleichgewicht zwischen Sekundärstrukturelementen die tertiäre Faltung beeinflusst und die Funktion moduliert.
(Nozinovic, S., Reining, A., Noeske, J., Wöhnert, J., Schwalbe, H. (2011), in Vorbereitung)