Gas system, gas quality monitor and detector control of the ALICE Transition Radiation Detector and studies for a pre-trigger data read-out system
- The main purpose of the Transition Radiation Detector (TRD) located in the central barrel of ALICE (A Large Ion Collider Experiment) is electron identification for separation from pions at momenta pt > 1 GeV/c, since in this momentum range the measurements of the specific energy loss (dE/dx) of the Time Projection Chamber (TPC) is no longer sufficient. Furthermore, it provides a fast trigger for high transverse momentum charged particles (pt > 3 GeV/c) and makes a significant contribution to the optimization of the tracking of reaction products in heavy-ion collisions. Its whole setup comprises 18 supermodules out of which 13 are presently operational and mounted cylindrically around the beam axis of the Large Hadron Collider (LHC). A supermodule contains either 30 or 24 chambers, each consisting of a radiator for transition radiation creation, a drift and an amplifying region followed by the read-out electronics. In total, the TRD is an array of 522 chambers operated with about 28 m3 of a Xe-CO2 [85-15%] gas mixture. During the work of this thesis, the testing, commissioning, operation and maintenance of detector parts, the gas system and its online quality monitor, improvements on the detector control user-interface and studies about a new pre-trigger module for data read-out have been accomplished. The TRD gas system mixes, distributes and circulates the operational gas mixture through the detector. Its overall optimization has been achieved by minimizing gas leakage, surveying, controlling, maintaining and continuously improving it as well as designing and carrying out upgrades. Gas quality monitors of the type \GOOFIE" (Gas prOportional cOunter For drIfting Electrons) can be used in gaseous detectors as on-line monitors of the electron drift velocity, gain and gas properties. One of these devices has been implemented within the TRD gas system, while another one surveys the gas of the TPC. Both devices had to be adapted to the specific needs of the detectors, were under constant surveillance and control, and needed to be further developed on both hardware and software side. To improve the operation of the TRD, modifications on its DCS software (Detector Control System) used for monitoring, controlling, operating, regulating and configuring of hardware and computing devices have been carried out. The DCS is designed to enable an operator to interact with equipment through user interfaces that display the information from the system. The main focus of this work was laid on the optimization of the usability and design of the user interface. The front-end electronics of the TRD require an early start signal (\pre-trigger") from the fast forward detectors or the Time-Of-Flight detector during the running periods. The realization of a new hardware concept for the read-out of the TRD pre-trigger system has been studied and first tests were performed. This new module called PIMDDL (Pre-trigger Interface Module Detector Data Link) is meant to acquire all data necessary to simulate and predict the full pre-trigger functionality, and to verify its proper operation. Furthermore, it shall provide all functionalities of the so-called Control Box Bottom as well as keep the functionalities of the already existing PIM (Pre-trigger Interface Module) in order to combine and replace these two modules in the future.