Juvenile Neuronal Ceroid Lipofuscinosis: toponomics approach to identifying new drug targets

  • Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a rare inherited childhood neurodegenerative disease that is caused by a mutation in the gene CLN3. The function of the protein produced by the gene has remained elusive, and therefore the disease mechanism of JNCL is as of yet unknown. The disease is fatal, and no cure is currently available. We believe that simvastatin shows promise as a possible treatment. Simvastatin is well tolerated in children, and as currently no other viable, less invasive treatment for JNCL exists, at least pilot-scale clinical trials for this new off-label use of simvastatin are warranted. The protein CLN3 has been indicated to have several different subcellular localizations and functions, but conclusive evidence about its role in cellular metabolism is lacking. It is also unclear why the mutation causes the distinct phenotype of the JNCL disease. In order to bring lucidity to the issue, we set out to identify metabolic pathways related to the phenotype of JNCL by using Multi-Epitope Ligand Cartography (MELC) and the related field of toponomics. Toponomic methods are required to process the massive amount of data generated by the MELC runs in order to extract information from them. Our disease model of choice was the CLN3Δex7/8 knock-in mouse. To separate cause from effect, we compared embryonal wild type and mutant mouse brains to their adult counterparts. The first analyses revealed progressively abnormal Combinatorial Molecular Patterns (CMPs, an unit of toponomic data) related to cholera toxin/ganglioside 1 (Ctx/GM1), which is a membrane microdomain marker. Cholesterol is an essential part of microdomains, so we utilized filipin staining to see if there were actual changes in cholesterol concentration and localization between healthy and diseased animals. After the disturbance in cholesterol metabolism was verified, we investigated the metabolic pathway that synthesizes cholesterol, the mevalonate pathway. Simvastatin is a drug that specifically down-regulates the mevalonate pathway. Fish oil affects lipid homeostasis and has some effects similar to those of simvastatin, and both of these drugs have previously been studied for their effects on neurodegenerative diseases. After treatment of mice with these drugs, highperformance liquid chromatography (HPLC) measurements on the brain homogenate showed a decrease in levels of farnesyl pyrophosphate (FPP) and geranyl-geranyl pyrophosphate (GGPP), products of the mevalonate pathway, confirming the effect of these drugs on the brains of the animals. Analyses of motor function of the mice further supported the notion that simvastatin had a positive effect on the condition of the diseased animals. CMP analyses from the simvastatin treated mice showed a rescue of the Ctx/GM1 CMPs, suggesting at least a partial restoration of membrane microdomain homeostasis. Filipin staining revealed reversion of the apparent cholesterol depletion in the adult mutant mouse hippocampus by simvastatin. Interestingly, an additional effect of the treatment was found: simvastatin also affected glutamate receptor homeostasis, especially as regarding to N-methyl-D-aspartate (NMDA) and alphaamino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors. This finding suggested that excitotoxicity could be a part of the disease process, and pointed towards glutamate receptors as possible therapy targets. This is in line with previous studies that have shown that attenuation of AMPA receptors and L voltage-dependent channels improve the phenotype of a JNCL mouse and cell model, respectively. Simvastatin mediates many of its effects via downregulation of the mevalonate pathway products, such as isoprenoids and cholesterol. However, simvastatin also has multiple pleiotropic effects that include suppression of excitotoxicity and granting neuroprotection. It is apparent that simvastatin treatment has a positive effect on JNCL mice, but if its effects are mediated via cholesterol (and membrane microdomains), isoprenoids (and isoprenylated proteins) or via a fully cholesterol independent mechanism remains to be solved. In this study we have shown that with the MELC method and toponomics it is possible to approach rare diseases with confounded disease mechanisms with a hypothesis-free approach, to identify possible drug targets, and to monitor the effects of the drugs on treated individuals. This should open up a new avenue in the research of the many diseases that so far have avoided all attempts at discerning their nature.

Download full text files

  • Dissertation_Krokfors_Anna_Pupu_Ingeborg.pdf
    eng

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anna Krokfors
URN:urn:nbn:de:hebis:30:3-290469
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Anna Starzinski-PowitzORCiDGND, Ritva Tikkanen
Document Type:Doctoral Thesis
Language:English
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/10/22
Release Date:2013/03/12
Page Number:145
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:334139317
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG