Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors

  • Roads contribute to habitat fragmentation and function as dispersal barriers for many organisms. At the same time many nonnative plant species are associated with road systems, a relationship that has been explained by the availability of disturbed habitats along roadsides and traffic-mediated dispersal of species. By studying secondary wind dispersal (SWD) over paved ground in an urban road corridor, we add the perspective of corridor-specific, but traffic-independent dispersal processes to the complex dispersal systems along roads. We analyzed (1) the seed shadow of an invasive tree Ailanthus altissima along a sidewalk subsequent to a strong wind and (2) the movements of painted samaras of this species released at ground level at the same site to identify the functioning of SWD. For the first experiment, we searched for samaras in the vicinity of an isolated tree three days after a strong wind. For the second experiment, we tracked the movement of the released samaras repeatedly over a period of 9–11 days, approximated probability-distance functions to the frequency distribution of samaras along the transect for different times after release, and related nearby measured wind data to changes in dispersal kernels. Single samaras from an isolated tree formed a seed shadow that extended for a distance of up to 456 m, and fragments of fruit clusters traveled up to 240 m. Forty-two percent of the sampled samaras were moved >100 m. The second experiment revealed that painted samaras released on the ground were moved up to 150 m over the pavement. Dispersal distances increased with time after seed release. A wider distribution of diaspores over the transect was significantly related to higher wind sums. Habitat shifts to safe sites for germination occurred during SWD, and different types of pavement influenced these processes. Smooth-surfaced pavement enhanced SWD, while cobbles with irregular surfaces slowed down or terminated SWD. During the observation period, 17% of released samaras accumulated in patches with a planted tree. Some were recaptured within the median strip and thus must have been lifted and moved over four lanes of heavy traffic. Our results suggest that impervious surfaces within road corridors can function as powerful avenues of wind-mediated long-distance dispersal and may counteract fragmentation of urban habitats. This also offers a functional explanation for the invasion success of Ailanthus at isolated urban sites.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Ingo Kowarik, Moritz von der Lippe
Parent Title (English):NeoBiota
Document Type:Article
Date of Publication (online):2013/10/28
Date of first Publication:2011/08/11
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/10/28
Tag:Alien species; anemochory; dispersal kernel; exotic species; habitat connectivity; seed tracking
Page Number:22
First Page:49
Last Page:70
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Sammlungen:Sammlung Biologie / Sondersammelgebiets-Volltexte
Zeitschriften / Jahresberichte:NeoBiota / NeoBiota 9
Licence (German):License LogoCreative Commons - Namensnennung 3.0