Dünne Schichten und Einkristalle neuer organischer Ladungstransferkomplexe

  • In dieser Arbeit wurden eine Reihe neuer organischer Ladungstransfer (CT)-Verbindungen in Form von Einkristallen und Dünnschichten synthetisiert und grundlegend charakterisiert. Für die Synthese kamen verschiedene bekannte und bislang unbekannte Donor- und Akzeptormoleküle zum Einsatz. Während einige bekannte Materialien wie TTF und TCNQ kommerziell erworben werden konnten, bestand im Rahmen der Kollaboration mit dem MPI für Polymerforschung zudem Zugang zu mehreren neuen Molekülen wie TMP und HATCN, die besonders mit Blick auf die Möglichkeit zur Dünnschichtpräparation ausgewählt wurden. Auf dieser Grundlage konnten zum einen mittels verschiedener Varianten der Lösungszüchtung erfolgreich neue CT-Komplexe als Einkristalle gezüchtet werden. Dabei kamen mehrere unterschiedliche Lösungsmittel zur Anwendung, die z.T. auch die gezielte Synthese bestimmter Kristallphasen erlaubten. Zum zweiten gelang die Präparation eines Teils dieser Systeme als Dünnschicht über die Methode der Molekularstrahldeposition mit verschiedenen Isolatoren wie SiO2 als Substratmaterial. Hierbei wurde zum Teil zuvor gezüchtetes Material eingesetzt, zum Teil entstand die neue Verbindung erst über diesen Prozess. Die Proben der neuen Verbindungen wurden zunächst mittels verschiedener Methoden morphologisch und kristallographisch untersucht. Die Kristallzüchtung lieferte in vielen Fällen eine gute Kristallqualität, die sowohl für die Strukturbestimmung als auch die späteren elektrischen Messungen ausreichend war. Die Kristallstruktur konnte für mehrere neue Systeme ermittelt werden und ergab in allen Fällen eine Anordnung mit gemischten Donor-Akzeptor-Stapeln. Für die präparierten Dünnschichten konnte bei einem Großteil der Verbindungen gemäß der Untersuchungen mittels Röntgendiffraktion die gleiche(n) kristalline(n) Struktur(en) wie in den Einkristallen festgestellt werden. Es ließen sich zwei wesentliche Beobachtungen machen: a) Die Morphologie der Schichten besitzt eine ausgeprägte Tendenz zu rauem Inselwachstum; b) In praktisch allen Fällen bilden sich innerhalb der Schicht mindestens zwei stabile CT-Phasen parallel. Beide Verhaltensweisen traten nahezu unabhängig von Substrat, dessen Temperatur, Ausgangszustand (Material vorreagiert oder nicht) und Depositionstemperatur auf. Die elektronischen Transportmessungen bestanden primär aus temperaturabhängigen Messungen der elektrischen Leitfähigkeit, während Feldeffektmessungen mit organischen Transistorstrukturen lediglich den Charakter einer Grundsteinlegung für tiefergehende Untersuchungen mit optimierten Schichten hatten. Die Kryostat-Messungen bis hinunter zu rund 1,5 Kelvin zeigten bei keiner der Verbindungen ein klares Anzeichen für einen Phasenübergang. Die absoluten Werte der Leitfähigkeit bei Raumtemperatur passten qualitativ zu der typischen Erwartung an ein gemischt gestapeltes CT-System, nämlich ein halbleitendes oder isolierendes Verhalten, was durch das arrhenius-artige Temperaturverhalten auch bestätigt wurde. Dielektrische Messungen mit Kondensatorstrukturen wurden für die neuen Systeme TMP-TCNQ und ET-DTF in der Dünnschichtform vorgenommen. Im Vordergrund stand dabei die Suche nach neuen Verbindungen, die einen neutral-ionischen Phasenübergang zeigen, der sich im Idealfall durch eine starke, peakförmige Anomalie in der Temperaturabhängigkeit der Dielektrizitätskonstanten bemerkbar machen sollte. Während sich in TMP-TCNQ keinerlei Hinweise auf einen Übergang zeigten, lieferte ET-DTF einen Verlauf, der einen strukturellen Übergang andeutet, dessen Identität aber noch ungeklärt ist. Zur Ergänzung wurden mit Hilfe mehrerer Kooperationspartner weitere Untersuchungen zwecks Charakterisierung der neuen CT-Systeme vorgenommen. Die Bestimmung des Ladungstransfergrades δ mittels IR-Absorption lieferte im Wesentlichen eine Bestätigung der Beobachtung, dass die inspizierten Verbindungen gemischt gestapelte Systeme halbleitender oder isolierender Natur sind, da δ nur geringe Werte von max. ca. 0,2 zeigte, die für solche Systeme typisch sind. In ähnlicher Weise bestätigten Bandstruktur-Rechnungen dieses Verhalten, da die Bänder allgemein nur eine eher geringe elektronische Bandbreite zeigten. Zudem ergab sich für die trikline Phase von ET-DTF und das System TMP-F4TCNQ eine deutliche Anisotropie hinsichtlich der Dispersion, da diese erheblich verstärkt entlang der zur Stapelachse des Systems korrespondierenden Richtung des k-Raumes auftritt, also (im Einklang mit den Leitfähigkeitsdaten) 1D-Charakter besitzt. Ein weiterer Beitrag zur Suche nach neuen NI-Verbindungen entstand durch Messung der charakteristischen CT-Absorption einiger Systeme im optischen bzw. IR-Spektrum. In Kombination mit den Werten für Ionisierungsenergie und Elektronenaffinität konnte eine Einordnung in das von Torrance et al. entwickelte, sog. V-Diagramm vorgenommen werden, mit dessen Hilfe sich aussichtsreiche Molekülkombinationen für ein neues NI-System eruieren ließen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Milan RudloffGND
URN:urn:nbn:de:hebis:30:3-333222
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Michael HuthORCiDGND, Cornelius KrellnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/02/21
Release Date:2014/03/27
Page Number:233
HeBIS-PPN:338202021
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht