Entwicklung einer FPGA-basierten JTAG-Ansteuerung für die Sensoren des CBM-MVD

  • Im Rahmen dieser Arbeit wurde eine JTAG-Ansteuerung für MIMOSA26-Sensoren basierend auf FPGA-Boards entwickelt. Als VHDL-Code ist die Implementierung anpassbar. Jede JTAG-Chain wird durch einen unabhängigen JTAG-Chain-Controller angesteuert, so dass sich begrenzt durch die Zahl der I/O-Leitungen und die Ressourcen die Anzahl der JTAG-Chain-Controller auf einem FPGA einstellen lässt. Die Anpassbarkeit hat sich bereits bei der Strahlzeit am CERN im November 2012 gezeigt, für die eine Version mit drei JTAG-Chain-Controllern auf einem FPGA und Ausgängen auf einem SCSI-Kabel synthetisiert wurde. Dabei wurde die Prototyp-Frontend-Elektronik Version 1 verwendet. Außerdem ist die Größe des pro Sensor verwendeten Speichers (in Zweierpotenzen) im VHDL-Code einstellbar, um auch eventuelle zukünftige Sensoren mit größeren Registern zu unterstützen. Aus dieser Sicht sollte die Implementierung mit kleinen Anpassungen im finalen MVD verwendbar sein, es gibt jedoch wie immer noch Verbesserungsmöglichkeiten, z.B. die Verwendung eines externen Speichers. Des Weiteren fehlt noch eine grafische Benutzeroberfläche für den finalen MVD, wobei wie bei den anderen Detektoren von CBM dazu eine Steuerung basierend auf EPICS entwickelt werden sollte, um eine einheitliche Oberfläche zu erreichen. Auf Seiten der Elektronik für ded finalen MVD gibt es noch einige offene Fragen, vor allem bei der Entwicklung der Zuleitungen für die Sensoren. Die Signale auf den Flexprint-Kabeln zeigen bereits bei kurzen JTAG-Chains ein hohes Übersprechen (Abschnitt 9.1.2), das zu hoch werden könnte, wenn man Sensor-Module mit mehr als einem Sensor (wie für den finalen MVD geplant, siehe Kapitel 3) an das bisher verwendete Chain-FPC anschließt.. Es kann jedoch auch gut sein, dass das Übersprechen gar kein Problem darstellen wird. Prinzipiell besteht die Möglichkeit, dass sich das Übersprechen z.B. durch Einfügen einer Masseschicht in Kabel und Boards reduzieren lässt, was in Simulationen gezeigt wurde (siehe Kapitel 8). Jedoch wurden in diesen Simulationen die Steckverbinder und eventuelle Fehlanpassungen der Boards vernachlässigt, weshalb nicht sicher ist, ob bzw. wie gut sich dies praktisch umsetzen lässt. In jedem Fall stellen die betrachteten Möglichkeiten, das Übersprechen zu reduzieren, einen erhöhten Aufwand dar. Daher erscheint es sinnvoll, zuerst eine konkrete Geometrie für die Elektronik des finalen MVD zu entwerfen1, und für diese zu ermitteln, ob das Übersprechen ein Problem darstellt. Dabei stellt sich die wichtige Frage, wie viele Sensoren auf einem Sensor-Modul mit einem einlagigen Kabel in der zur Verfügung stehenden Breite angeschlossen werden können, da mindestens vier zusätzliche Datenleitungen für jeden weiteren Sensor erforderlich sind.

Download full text files

  • DOC-2013-Aug-5-1.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bertram Neumann
URN:urn:nbn:de:hebis:30:3-334475
URL:https://www-alt.gsi.de/documents/DOC-2013-Aug-5-1.pdf
Referee:Joachim StrothORCiD, Ingo Fröhlich
Document Type:Master's Thesis
Language:German
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/16
Tag:CBM
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:344421678
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG