Die Anwendung der WKB-Theorie zur Simulation der schwach nichtlinearen Dynamik von Schwerewellen

  • Es ist schon seit Längerem bekannt, dass Schwerewellen die Zirkulation der mittleren Atmosphäre beeinflussen. Sie werden fast ausschließlich in der Troposphäre durch Prozesse wie Gebirgsüberströmung, Konvektionen, Frontogenese etc. erzeugt. Sie propagieren von ihrem Entstehungsort in der Troposphäre in die höheren Schichten der Atmosphäre und transportieren dabei ihre Energie und ihren Impuls. Unter der Voraussetzung, dass die Energie von Schwerewellen erhalten bleibt und die Dichte der Atmosphäre mit der Höhe exponentiell abnimmt, wächst die Amplitude der Schwerewellen so stark an, dass sie brechen und ihren Impuls in Stratosphäre und Mesosphäre deponieren. Als Folge davon beeinflussen Schwerewellen die großräumige Zirkulation der Atmosphäre und sind damit ein wichtiges Bindeglied, welches die Troposphäre mit anderen Atmosphärenbereichen verbindet. Folglich ist es wichtig, dass die Klima- und Wettermodelle in der Lage sind, die Schwerewellendynamik zu beschreiben. Bedauerlicherweise können diese Modelle nicht das komplette Schwerewellenspektrum auflösen. Somit müssen Schwerewellen in den Modellen parametrisiert werden. Viele Parametrisierungsschemen basieren auf Wentzel-Kramer-Brillouin(WKB)-Theorie. Die WKB-Gleichungen, die sogenannten Strahlengleichungen, beschreiben die räumliche und zeitliche Variation der Welleneigenschaften wie Wellenzahl, Wellenamplitude und Wellenfrequenz entlang der Charakteristiken, welche durch die lokale Gruppengeschwindigkeit vorgegeben sind. Die numerische Modelle, die auf den Strahlengleichungen basieren, werden als Strahlenmodelle bezeichnet. In Strahlenmodellen werden Schwerewellen durch Wellenteilchen dargestellt. Zur Zeit verwenden die Strahlenmodelle stationäre Strahlengleichungen, da die Wechselwirkung eines zeitabhängigen Schwerewellenfeldes mit einem zeit- und ortsabhängigen Hintergrund zu Problemen in Strahlenmodellen führen kann. Die Strahlengleichungen basieren auf der Annahme, dass sich nie zwei Wellenteilchen mit den unterschiedlichen Welleneigenschaften an einer Position befinden können. Wenn an einer Position zwei Wellenteilchen mit den unterschiedlichen Wellenzahlen befinden, entsteht sogenannte Kaustik: ein Punkt im Raum, an dem sich mehrere Charakteristiken kreuzen. Wenn eine Kaustik entsteht, kann die Wellenamplitude nicht mehr bestimmt werden. Ziel der vorliegenden Arbeit ist es mithilfe der WKB-Theorie die Ausbreitung von Schwerewellenpaketen in einer raum- und zeitabhängigen Hintergrundströmung zu beschreiben und ein numerisches Modell zu entwickeln, welches die Schwerewellen parametrisieren und ihre Wechselwirkung mit der raum- und zeitabhängigen Hintergrundströmung beschreiben kann. Einfachheitshalber wird in dieser Arbeit nur die Wechselwirkung zwischen horizontal periodischen, vertikal lokalisierten Schwerewellenpaketen und der raum- und zeitabhängigen Hintergrundströmung betrachtet.

Download full text files

Export metadata

Metadaten
Author:Jewgenija MuraschkoGND
URN:urn:nbn:de:hebis:30:3-363860
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Ulrich AchatzORCiDGND, Rupert Klein
Advisor:Ulrich Achatz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2015/01/07
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/11/03
Release Date:2015/01/07
Tag:Schwach nichtlineare Dynamik; Schwerewellen; WKB-Modelle; WKB-Theorie
Page Number:159
HeBIS-PPN:352702656
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht