Hematopoietic stem cell differentiation and lineage selection control by GADD45G

  • Hematopoietic stem cells (HSCs) have the unique abilities of life-long self-renewal and multi-lineage differentiation. They are routinely used in BM or stem cell transplantations to reconstitute the blood system of patients suffering from malignant or monogenic blood disorders. For an adequate production of each blood cell lineage in homeostasis and under stress conditions, the fate choice of HSCs to either self-renew or to differentiate must be strictly controlled. The incomplete understanding of the molecular mechanisms that control this balance makes it still impossible to maintain or expand undifferentiated HSCs in culture for advanced regenerative medical purposes. The aim of this thesis was the identification and molecular characterisation of mechanisms that control the decision of HSCs to self-renew or to differentiate, and how they are connected to extrinsic cytokine signaling control. Prior to this thesis, a screening for genes upregulated under self-renewal promoting thrombopoietin (TPO) signaling via the transcription factors STAT5A/B in HSCs was conducted, and Growth arrest and DNA damage inducible 45 gamma (Gadd45g) was one of the regulated genes. GADD45G was described as stress sensor, DNA-damage response and tumor suppressor gene, that is epigenetically silenced in many solid tumors and leukemia. Furthermore, Gadd45g is upregulated in aged HSCs with impaired multi-lineage reconstitution abilities, and it is induced by differentiation promoting cytokines in GM-committed cells. However, the function of GADD45G in LT-HSCs was unknown. All these points warrant further investigation to unravel the function of GADD45G on early cell fate decisions of HSCs in hematopoiesis. The expression of Gadd45g was stimulated by hematopoietic cytokines TPO, IL3 and IL6 both in HSCs and MPPs, making GADD45G an interesting target to focus on. To simulate the cytokine-induced expression GADD45G was lentivirally transduced in HSCs. Surprisingly, GADD45G did not induce cell cycle arrest or cell death in hematopoietic cells neither in vitro nor in vivo, as reported in many cell lines. Instead GADD45G revealed an enhanced and markedly accelerated differentiation of HSCs into mainly myelomonocytic cells, similar as observed for IL3 and IL6 containing cultures. Also in vivo, GADD45G rapidly initiates the differentiation program in HSCs at the expense of self-renewal and long-term engraftment, as shown by serial HSC transplantation experiments. Along the same line, HSCs from Gadd45g-knock out mice exhibited an increased self-renewal. In vitro, Gadd45g-/- progenitors showed higher and prolonged colony formation potential and slower expansion after cytokine stimulation. The loss of Gadd45g increased HSC self-renewal and improved repopulation in secondary recipients, determined by serial competitive transplantations. Taken together, GADD45G could be identified as molecular link between differentiation-promoting cytokine signaling and rapid differentiation induction in murine LT-HSCs. As presented in this thesis the differentiation induction of GADD45G was mediated by the activation of the cascade of MAP3K4 – MKK6 –p38 MAPK. Small molecule inhibition of p38, but not JNK, blocked the GADD45G-induced differentiation. GADD45G binds to MAP3K4 and releases its auto-inhibitory loop by a change in confirmation, initiating this cascade. Phosphoflow cytometry demonstrated the activation of p38 and a downstream kinase MK2 by GADD45G expression in MPPs. Furthermore, the expression of constitutive active MAP3K4 and MKK6 were able to phenocopy GADD45G-induced differentiation, which could be blocked by p38 inhibition. The other two family members GADD45A and B also induced accelerated differentiation in LT-HSCs. Interestingly, only GADD45G suppressed the differentiation into megakaryocyte and erythrocyte (Mek/E) lineage cells suggesting a role of GADD45G in lineage choice. Long-term time-lapse microscopy-based cell tracking of single LT-HSCs and their progeny revealed that, once GADD45G is expressed, the development of LT-HSCs into granulocyte-macrophage-committed progeny occurred within 36 hours, and uncovered a selective lineage choice with a severe reduction in Mek/E cells. Furthermore, no megakaryocytic-erythroid progenitors (MEPs) could develop from HSPCs in BM 2 weeks after transplantation suggesting a very early selection against Mek/E cell fates. In line with these findings, GADD45G-transduced MEPs could not expand or form colonies in vitro, demonstrating that the differentiation program induced by GADD45G is not compatible with Mek/E lineage fate. Gene expression profiling of HSCs indicated that GADD45G promotes myelomonocytic differentiation programs over programs for self-renewal or megakaryo-/ erythropoiesis. The here identified differentiation induction potential of GADD45G is so strong that the expression of GADD45G in primary acute myeloid leukemia (AML) cells inhibited their expansion accompanied by enhanced differentiation and increased apoptosis. The here presented work shows that IL3 and IL6 induce a differentiation program in HSCs via GADD45G and p38 closing the link of extrinsic cytokine signaling and differentiation induction. Since the loss of Gadd45g increased the self-renewal and slowed HSC differentiation, this may be utilized, i.e. by p38 inhibition, to ex vivo maintain and expand HSCs by preventing cytokine-induced differentiation. Furthermore, Re-expression of GADD45G may overcome the differentiation block in leukemia to eliminate these cells by driving them into terminal differentiation and apoptosis.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frederic Bastian ThalheimerORCiDGND
URN:urn:nbn:de:hebis:30:3-377339
URL:http://www.cell.com/stem-cell-reports/abstract/S2213-6711%2814%2900151-9
DOI:https://doi.org/10.1016/j.stemcr.2014.05.010
Title Additional (German):Die Funktion von GADD45G in der Differenzierung von hämatopoetischen Stammzellen und deren Linienentscheidung
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Michael A. RiegerORCiDGND
Advisor:Michael A. Rieger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/06/17
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/05/12
Release Date:2015/06/17
Page Number:125
Last Page:117
HeBIS-PPN:360444709
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht