Combination therapy in type 1 diabetes

  • Type 1 Diabetes (T1D) is an autoimmune disorder in which the own immune system attacks the insulin producing _-cells in the pancreas. Therapy of T1D with anti-CD3 antibodies (aCD3) leads to a blockade of the autoimmune process in animal models and patients resulting in reduced insulin need. Unfortunately, this effect is only temporal and the insulin need increases after a few years. In the first approach, I aimed at a blockade of the cellular re-entry into the islets of Langerhans after aCD3 treatment by neutralising the key chemokine CXCL10, which is important for the T cell migration. In the second approach I tried to block the transmigration of leukocytes trough the endothelial layer into inflamed tissue with an anti-JAM-C antibody (aJAM-C) after aCD3 treatment. I used the well-established RIP-LCMV-GP mouse model of T1D. As target autoantigen in the _-cells, such mice express the glycoprotein (GP) of the lymphocytic choriomeningitis virus (LCMV) under control of the rat insulin promoter (RIP). These mice develop T1D within 10 to 14 days only after LCMV-infection. In the combination therapy (CT) I treated diabetic RIP-LCMV-GP mice with 3 5g aCD3 per mouse (3 injections in 3 days) followed by administration of a neutralising anti-CXCL10 (CT) or aJAM-C (CT-J) monoclonal antibody (8 injections of 100 5g per mouse over 2.5 weeks). CT reverted T1D in RIP-LCMV-GP mice significantly (CT: 67 % reversion; control: 16 % reversion) and with superior efficacy to monotherapies with aCD3 (38 % reversion) and aCXCL10 (36 % reversion). The CD8 T cells in the spleen have fully regenerated at day 31 after infection. However, the frequency of islet antigen (GP)-specific CD8 T-cells was significantly reduced by 73 % in the spleen after CT compared to isotype control treated mice. In contrast, in aCD3 treated mice the T cells were only reduced by 56 % of the frequency of isotype control treated mice. Flow cytometry and immunohistological examinations demonstrated a marked reduction of CD8 T cells in the pancreas of CT treated mice. Importantly, the number of GP-specific CD8 T cells was reduced dramatically by 78 % in the pancreas of CT treated mice, whereas aCD3 treatment led to a less pronounced reduction of the GP-specific CD8 T cell number (23 %). This reduction of infiltration was long lasting since in the pancreas of CT treated mice the _-cells produce insulin and there were almost no infiltrating T cells present at day 182 post-infection. aCD3 treated mice also showed many insulin producing cells after 182 days post-infection. Nevertheless, their pancreas displayed also some infiltrates around the islets. In order to confirm my data I treated non-obese diabetic (NOD) mice with CT. In contrast to RIP-LCMV-GP mice, NOD mice develop spontaneous T1D within 15 to 30 weeks after birth, due to a mutation in the CTLA-4 gene. Strikingly CT cured 55 % of diabetic NOD mice, whereas only 30 % showed T1D reversion with aCD3 alone and none reverted after isotype control administration. The impact of CT on GP-specific T cells (Teff) was stronger in the RIP LCMV-GP than in the NOD model. In contrast, regulatory T cells (Tregs) were induced predominantly in NOD mice rather than in RIP-LCMV-GP mice. However, looking at the Treg/Teff ratio and compared to isotype control antibody treated mice, I found a significant 4-fold increase in the pancreas of CT treated RIP LCMV-GP mice and a 17-fold increase in the PDLN of CT treated NOD mice. In addition, a tendency for an increase in Treg/Teff ratio was obtained in the spleen of CT-treated RIP LCMV-GP as well as NOD mice compared to aCD3 and isotype control antibody treated mice. In the second combination therapy with neutralising aJAM-C, CT-J (51 % reversion) slightly improved the aCD3 therapy (41 % reversion). However, there was no significant difference between CT-J and aCD3 administration in terms of total CD8 and GP-specific CD8 T cells. JAM-C also interacts with the integrin receptor macrophage-1 antigen (MAC-1), which is among others expressed by neutrophils. Accordingly, JAM-C could be involved in neutrophil transmigration to the pancreas. Indeed, I found a significant reduction for the infiltrating neutrophils into the pancreas of mice after CT-J compared to aCD3 monotherapy. In summary the addition of aJAM-C to aCD3 monotherapy showed a small improvement, which was associated with a reduced neutrophil migration into the pancreas. However, JAM C seemed to play only a minor role in T1D development and some other adhesion molecules might be more important. Nevertheless, the combination of aCD3 and aCXCL10 resulted in a significant and long lasting reduction of aggressive T cells in the pancreas in two independent mouse models. Furthermore a protective immune balance was obtained. Since both antibodies are available for as well as tested in humans and the therapy is only for a short period of time after disease onset, this combination therapy might kick-start a novel therapy for T1D.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stanley Lasch
URN:urn:nbn:de:hebis:30:3-394001
Referee:Dieter SteinhilberORCiDGND, Urs ChristenORCiDGND
Advisor:Urs Christen
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/03/01
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/02/03
Release Date:2016/03/01
Tag:anti-CD3; anti-CXCL10; type 1 diabetes
Page Number:180
Last Page:164
HeBIS-PPN:371437911
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht