Roman mining and metal production near the antique city of Ulpiana (Kosovo)

  • This PhD thesis has been carried out within an interdisciplinary cooperational project between the Deutsches Bergbau-Museum Bochum and the Goethe-Universität Frankfurt, which is dedicated to ancient Pb-Ag mining and metal production in the hinterland of the municipium Ulpiana in central Kosovo. Geochemical analysis (OM, XRD, EMP, MC-ICP-MS) of ores, metallurgical (by-) products and metal artefacts allowed to reconstruct the local chaîne opératoire and to decipher significant chronological differences between presumably Roman/late antique and medieval/early modern metallurgical processing. Pb isotope provenance studies documented the relevance of local metal production within the Roman Empire and confirmed the actual existence of a Metalla Dardanica district, which until now solely has been suspected on basis of epigraphy. The predominant abundance of the by-products matte (Cu, Pb, Fe and Zn sulphides) and speiss (ferrous speiss: Fe-As compounds; base metal speiss: ~(Cu,Ni,Fe,Ag )x(Sb,Sn,As )y ) at smelting sites with a preliminary Roman/late antique dating points to treatment of complex polymetallic ore. Pb isotope analysis demonstrated that the mining district of Shashkoc-Janjevo (partially) supplied six of the ten investigated metallurgical sites. In this mineralisation, parageneses with elevated Cu, As and Sb abundances comprise significant proportions of particularly tennantite-tetrahedrite minerals, chalcopyrite, arsenopyrite and were generated during the early and main stages of ore formation. Later precipitated ore in contrast is marked by a significantly less versatile mineralogy and consists almost exclusively of galena, sphalerite and pyrite/marcasite. Besides increased Cu, As and Sb contents, ore from the main formation stage also exhibits generally higher Ag abundances, which are mainly hosted by fahlore and locally abundant secondary Cu sulphides (chalcocite, digenite and covellite) and oxidised phases (e.g. malachite, azurite). The higher precious metal grades of this ore type, whose geochemical signature (i.e. higher proportions of Cu, As and Sb) is mirrored by the abundance of the metallurgical by-products matte and speiss (almost exclusively found at potentially Roman/late antique smelting sites; see above), presumably were a pivotal factor leading to its preferential exploitation in earlier times. Matte and base metal-rich speiss contain notable amounts of Ag, which are mainly present in Cu-(Fe) sulphides and particularly antimonides ((Cu,Ni)2Sb, Ag3Sb), respectively. While the speiss compounds due to their close association with Pb bullion presumably were cupelled automatically, the metallurgical treatment of matte could not have been proven unambiguously, but overall certainly is highly likely. The beneficiated ore (i.e. crushed and sorted, potentially also treated by more lavish techniques such as grinding, sieving or wet-mechanical methods) possibly was partially roasted and subsequently together with fluxes and charcoal submitted to the furnaces. The working temperatures approximately ranged between 1100 and 1400 °C. Slags from all presumably Roman/late antique dated and few of their potentially medieval/early modern analogues were produced from smelting of (partially roasted) ore with charcoal and added siliceous material, thus resulting in fayalite-dominant phase assemblages or rarely observed glassy parageneses. Even though several subtypes of fayalite slags have been established on basis of the abundance of Fe-rich oxide phases (i.e. spinel ss and wüstite), late clinopyroxene and the general solidification sequence of the slags, the process conditions (i.e. temperature, fO2, added fluxing agents) must have been widely similar; chemical variations could be explained by varying degrees of interaction of the slag melt with charcoal ash and furnace material. The other investigated metallurgical remains indicate employment of a calcareous flux, which led to formation of Ca-rich olivine-, olivine+clinopyroxene-, clinopyroxene- or melilite-type slags. These types as well as glassy slags were generated at more oxidising conditions outside the fayalite stability field (FMQ buffer equilibrium, cf. Lindsley, 1976) than their olivine-dominant analogues. Conclusions on the furnace construction could be drawn on basis of the typology of the slags, which mostly were tapped into a basin located outside the furnace, but partially (at two presumably medieval/early modern sites) also accumulated in a reservoir within the smelter. Lead artefacts excavated in Ulpiana could be isotopically related to ores from mineralisations in its vicinity and demonstrate that the resources were at least utilised for local metal production. However, also ship wreck cargo from Israel - including several lead ingots with the inscription 'MET DARD' (Raban, 1999) - and late antique lead-glazed pottery from Serbia and Romania (Walton & Tite, 2010) could be related to a possible Kosovarian/Serbian provenance of the raw material and thus indicate flourishing trade of metal from the Metalla Dardanica district within the Roman Empire. References: Lindsley, D. H. (1976). Experimental studies of oxide minerals. In D. Rumble, III (Hrsg.), Oxide minerals (61-88). Reviews in Mineralogy, Volume 3. Washington, DC: Mineralogical Society of America. Raban, A. (1999). The lead ingots from the wreck site (area K8). Journal of Roman Archaeology, Supplementary Series, 35, 179-188. Walton, M. S., & Tite, M. S. (2010). Production technology of Roman lead-glazed pottery and its continuance into late antiquity. Archaeometry, 52(5), 733-759.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katrin Julia WestnerGND
URN:urn:nbn:de:hebis:30:3-440483
Place of publication:Frankfurt am Main
Referee:Gerhard BreyGND, Sabine KleinGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/03/15
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/01/25
Release Date:2017/03/15
Tag:Moesia Superior; Pb-Ag; Roman; archaeometallurgy; medieval/early modern
Page Number:448
HeBIS-PPN:400513102
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht