Die Bedeutung des funktionellen Zusammenspiels zwischen dem MICOS-Komplex und der F1FO-ATP Synthase für die Bildung von Cristae und Crista Junctions im Modellsystem Saccharomyces cerevisiae

  • Die mitochondriale Innenmembran (IM) besteht aus zwei Subkompartimenten. Der Cristae Membran (CM) und der inneren Grenzmembran (IBM), welche durch die runden und schlitzartige Strukturen der Christa Junctions (CJs) verbunden werden Der MICOS-Komplex ist an den CJs lokalisiert und besteht aus mindestens 6 Komponenten, Mic60, Mic27, Mic26, Mic19, Mic12 und Mic10. Es ist bekannt, dass der MICOS-Komplex essentiell für die Stabilität der CJs ist. Die in dieser Arbeit gezeigten Ergebnisse, geben Aufschluss darüber, wie sich einzelne MICOS-Komponenten auf die Stabilität von Cristae und CJs im Modellsystem Hefe (S cerevisiae) auswirken. Zu Beginn dieser Arbeit war zum einen bekannt, dass die MICOS-Komponente Mic60 essentiell für die Bildung von CJs ist. Zum Anderen wurden im Vorfeld dieser Arbeit Interaktionen von Mic60 mit Proteinen in der mitochondrialen Außenmembran, vor allem Proteinkomplexe mit β-barrel-Proteinen identifiziert. Diese Interaktionen werden über den evolutionär, konservierten C-Terminus von Mic60 vermittelt. β-barrel Proteine besitzen eine charakteristische Peptidsequenz, die β-Sequenz. Diese dient nach dem Import der β-barrel Proteine in die Mitochondrien als Signalpeptid für den SAM-/TOB-Komplex, welcher daraufhin die Proteine in die Außenmembran insertiert. In dieser Arbeit wurde ebenfalls eine β-Sequenz im C-Terminus von Mic60 identifiziert, diese zeigte einen Einfluss auf die Cristae-Stabilität. Zellen die eine Mic60-Variante mit einer Deletion oder Punktmutation der β- Domäne exprimieren, zeigten eine reduzierte Anzahl an CJs. Auch das Verkürzen des C-Terminus von Mic60 hatte diesen Effekt auf die mitochondriale Ultrastruktur. So konnte gezeigt werden, dass die β-Domäne und die Integrität des C-Terminus essentiell für die Stabilität von CJs sind. Der Fokus dieser Arbeit lag in der Charakterisierung der MICOS-Komponenten Mic26 und Mic27. Es konnte bewiesen werden, dass beide Proteine genetisch mit der MICOS-Kernkomponente Mic60 interagieren. Die Untersuchung der mitochondrialen Ultrastruktur von Δmic26- und Δmic27-Zellen zeigte, dass eine Deletion vom Mic26 keinen Einfluss auf die Organisation der mitochondrialen Innenmembran hat. Im Gegensatz dazu, ist im Vergleich zum Wildtyp die Anzahl an CJs in Δmic27-Zellen um zwei Drittel reduziert. Auch die Innenmembranoberfläche ist in diesen Zellen stark vergrößert. Die Untersuchung der Morphologie der mitochondrialen Innenmembran in Zellen ohne Mic27 durch Kryo-Elektronentomographie isolierter Mitochondrien, veranschaulichte die Struktur der CJs in diesen Zellen genauer. Es zeigten sich hier breitere CJs, und der Übergang von der Cristaemembran in den Bereich der inneren Grenzmembran ist sehr flach und undefiniert. In Wildtyp-Mitochondrien waren die CJs schmal und schlitzartig und haben einen scharfkantigen Übergang von der Cristaemembran zur inneren Grenzmembran. Des Weiteren wies die Cristaemembran in Δmic27-Zellen unregelmäßige zackige Strukturelemente auf, was auf eine Anhäufung an Dimeren der F1FO-ATP Synthase hinweist. Diese Beobachtungen in den Kryo-Tomogrammen, wurde durch Analysen des Oligomerisierungszustands der F1FO-ATP Synthase in Δmic27-Zellen, bestätigt. Hier fanden sich deutlich weniger höhere Oligomere und vermehrt Dimere. So kann aus diesen Befunden geschlossen werden, dass Mic27 die Oligomere der F1FO-ATP Synthase stabilisiert. Um zu untersuchen, wie der MICOS-Komplex mit der F1FO-ATP Synthase in Verbindung steht, wurde mittels 2D-BNE-Analysen und einem Complexome Profiling die Komplexierung der nativen Komplexe in Wildtyp- und Δmic27-Mitochondrien analysiert. Zum einen konnte durch diese Untersuchungen gezeigt werden, dass Mic27 neben der F1FO-ATP Synthase auch stabilisierend auf den MICOS-Komplex wirkt. Die Komplexe im hochmolekularen Bereich der MICOS-Komponenten zerfielen in Δmic27-Zellen, was darauf hinweist, dass die anderen MICOS-Komponenten hier nicht mehr assemblieren können. Mic10 war die einzige MICOS-Komponente die in Δmic27-Zellen noch stabile Komplexe im hohen Massenbereich ausbildete. Mic10 findet sich zudem nicht nur in Klustern mit anderen MICOS-Komponenten sondern auch mit der F1FO-ATP Synthase. Die Interaktion von Mic10 und der F1FO-ATP Synthase wurde auch biochemisch, mittels chemischer Quervernetzern und Ko-Immunpräzipitationsexperimenten bestätigt. Dies legt nahe, dass Mic10 die CJs mit hoher Wahrscheinlichkeit, durch die Verbindung mit der F1FO-ATP Synthase, mit der Cristaemembran verbindet und so stabilisiert. Aufgrund der Erkenntnisse dieser Arbeit konnte ein neuartiges Modell postuliert werden. Die MICOS-Komponente Mic60 stabilisiert die CJs durch eine Interaktion seines C-Terminus mit Proteinen in der Außenmembran. Mic27 vermittelt über Mic10 die Interaktion zur F1FO-ATP Synthase. Somit ist diese neu identifizierte Interaktion des MICOS-Komplex zur F1FO-ATP Synthase essentiell für die Stabilität von CJs ist, indem es den MICOS-Komplex mit den Oligomeren der F1FO-ATP Synthase verbindet.

Download full text files

Export metadata

Metadaten
Author:Katharina Eydt
URN:urn:nbn:de:hebis:30:3-444700
Place of publication:Frankfurt am Main
Referee:Enrico SchleiffORCiDGND, Andreas ReichertORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/08/27
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/01/27
Release Date:2017/09/05
Page Number:159
Note:
Druck- und CD-Ausgabe unter dem Titel: "Einfluss der Wechselwirkung zwischen MICOS-Komplex und F1F0-ATP-Synthase auf die Bildung von Cristae und Crista Junctions in Saccharomyces cerevisiae" erschienen.
HeBIS-PPN:416242928
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht