Kristallstrukturberechnungen fehlgeordneter organischer Verbindungen

  • Die chemischen und physikalischen Eigenschaften eines Festkörpers sind vom inneren Aufbau des Festkörpers abhängig. Die Methode der Wahl zur Bestimmung von Kristallstrukturen sind Beugungsexperimente. Fehlordnungen in den Kristallstrukturen werden mit Beugungsexperimenten häufig nur unzureichend ausgewertet oder ignoriert. In dieser Arbeit wurden die (möglichen) Stapelfehlordnungen der Aminosäuren DL-Norleucin und DL-Methionin, sowie von Chloro (phthalocyaninato)aluminium(III) untersucht. Dazu wurden Gitterenergieminimierungen mit Kraftfeld- und quantenchemischen Methoden an einem Satz geordneter Modellstrukturen durchgeführt. In den Kristallstrukturen der α- und β-Phasen von DL-Norleucin ordnen sich die Moleküle in Doppelschichten an und bilden jeweils eine Schichtstruktur mit unterschiedlicher Stapelsequenz. Röntgenbeugungsexperimente an Kristallen dieser Verbindung zeigen charakteristische diffuse Streuung. Die durchgeführten Gitterenergieminimierungen reproduzieren die experimentelle Stabilitätenreihenfolge der beiden Polymorphe von DL-Norleucin. Die berechneten Gitterenergien zeigen, dass es für DL-Norleucin bevorzugte Stapelsequenzen gibt. Die Gitterenergien und Molekülstrukturen einer einzelnen Doppelschicht sind dabei von der Anordnung benachbarter Doppelschichten abhängig. Zudem wurden Strukturmodelle mit Stapelsequenzen aufgebaut, die aus kristallographischer Sicht möglich sind, jedoch experimentell nicht beobachtet wurden, und deren Gitterenergie berechnet. Diese Stapelsequenzen liefern im Vergleich zu den energetisch günstigsten Stapelsequenzen einen signifikanten Energieverlust und treten daher selten auf. Ausgehend von den Ergebnissen der Gitterenergieminimierungen mit DFT-D-Methoden wurden Stapelwahrscheinlichkeiten mit Hilfe der Boltzmann-Statistik berechnet. Es wurde ein großes geordnetes Modell mit einer Stapelsequenz gemäß der Stapelwahrscheinlichkeiten aufgebaut. Dieses Modell wurde verwendet, um Beugungsexperimente zu simulieren und mit experimentellen Daten zu vergleichen. Die theoretischen und experimentellen Beugungsdaten waren in guter Übereinstimmung. Die Moleküle in den Kristallstrukturen der α- und β-Phasen von DL-Methionin bilden Doppelschichten. Die beiden Phasen unterscheiden sich in der Stapelung der Doppelschichten und der Molekülkonformation. Es wurden Gitterenergieminimierungen sowohl mit Kraftfeld-Methoden als auch mit DFT-DMethoden an geordneten Modellen mit unterschiedlichen Stapelsequenzendurchgeführt. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin bei tiefen Temperaturen wurde durch die Ergebnisse der kraftfeldbasierten Rechnungen reproduziert. Die Modellstrukturen wurden während den Rechnungen moderat verzerrt. Die Bandbreite der relativen Energien aller Modelle ist relativ gering, sodass eine Stapelfehlordnung aus thermodynamischer Sicht nicht ausgeschlossen werden kann. In der Regel liefern Gitterenergieminimierungen mit DFT-D Methoden genauere Ergebnisse. Die Modellstrukturen wurden während den Rechnungen nur leicht verzerrt. Allerdings unterscheidet sich das Energieranking zwischen den Kraftfeld- und DFT-D-Methoden deutlich. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin wurde mit DFT-D-Methoden nicht reproduziert. Die Energieunterschiede zwischen den beiden Polymorphen (ΔE = 1,60 kJ∙mol−1 (DFT-D2) bzw. ΔE = 0,83 kJ∙mol−1 (DFT-D3)) sind relativ gering und liegen im Fehlerbereich der Methode. Die Bandbreite der relativen Energien aller Strukturmodelle beträgt nur etwa 1,8 kJ∙mol−1. Auf dieser Grundlage ist eine Stapelfehlordnung in den Kristallstrukturen von DL-Methionin möglich, jedoch nicht experimentell beobachtet. Nicht nur die Kraftfeld-,sondern auch die DFT-D-Methoden scheinen für die Berechnung der Gitterenergien für das System DL-Methionin nicht genügend genau zu sein. Die erhaltenen relativen Energien sollten daher mit Vorsicht betrachtet werden. Chloro(phthalocyaninato)aluminium(III) (AlPcCl) bildet eine Schichtstruktur, in der sich die Moleküle zu Doppelschichten zusammenlagern. Die 1984 durchgeführte Kristallstrukturbestimmung [98] lieferte auf Grund der schlechten Datenqualität nur eine ungenaue Kristallstruktur. Die asymmetrische Einheit enthält zwei Moleküle, von denen das eine Molekül geordnet, das andere fehlgeordnet ist. Die Kristallstruktur von AlPcCl ist fehlgeordnet, weil eine einzelne Doppelschicht von Molekülen eine tetragonale P4/n-Symmetrie aufweist, die vier symmetrieäquivalente Möglichkeiten bietet, eine zweite Doppelschicht auf einer ersten Doppelschicht zu platzieren. Mit Hilfe der OD-Theorie wurde ein Satz geordneter Modelle mit verschiedenen Stapelsequenzen aufgestellt und die Gitterenergie zunächst mit Kraftfeld-Methoden und anschließend mit DFT-DMethoden berechnet. Auf Grund unzureichender Parametrisierung, musste das Kraftfeld an das System AlPcCl angepasst werden. Die Modellstrukturen werden während den Kraftfeld-Rechnungen nur leicht verzerrt. Die berechneten Gitterenergien hängen allerdings stark von der verwendeten Parametrisierung und den Atomladungen ab und sollten daher mit Vorsicht betrachtet werden. Genauere Ergebnisse erzielten Gitterenergieminimierungen mit DFT-D-Methoden. Die verschiedenen Stapelsequenzen haben eine ähnliche Energie, was die Stapelfehlordnung in der Kristallstruktur von AlPcCl erklärt. Die Überlagerung der vier energetisch günstigsten geordneten Stapelsequenzen führt zu einer gemittelten Struktur, die sehr gut die fehlgeordnete experimentelle Kristallstruktur von AlPcCl erklärt.

Download full text files

Export metadata

Metadaten
Author:Christian CzechGND
URN:urn:nbn:de:hebis:30:3-446482
Place of publication:Frankfurt am Main
Referee:Martin U. SchmidtGND, Martin GriningerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/10/19
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/10/02
Release Date:2017/10/20
Page Number:xii, 120
HeBIS-PPN:418668531
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht