RNA-Aptamer-Ligand-Interaktionen

  • RNA-Aptamere sind kurze einzelsträngige Oligonukleotide, die ein Zielmolekül spezifisch erkennen und über ihre 3D-Struktur binden. Die Identifizierung von Aptameren erfolgt mittels in vitro Selektion nach dem Kriterium einer hohen Bindungsaffinität und/oder -spezifität. Das Tetracyclin-bindende Aptamer gehört zu den Aptameren mit der höchsten bekannten Liganden-Affinität. Darüber hinaus gehört es zu den wenigen RNA-Aptameren, die in vivo als artifizieller Riboswitch zur Modulation der Genexpression eingesetzt werden können. Im Rahmen der vorliegenden Arbeit wurde das Tetracyclin-bindende Aptamer mittels NMR-spektroskopischer und biophysikalischer Methoden im ligandfreien sowie im ligandgebundenen Zustand untersucht, um neben der bereits bekannten Kristallstruktur des RNA-Tetracyclin-Komplexes Aufschlüsse über den dynamischen Ligandenbindungsprozess und die damit verbundene genregulatorische Aktivität des Aptamers zu erhalten. Hierfür wurde der Einfluss von Mg2+-Ionen auf die globale und lokale Strukturausbildung des ligandfreien Aptamers analysiert. Durch die Bindung von Mg2+-Ionen an die RNA wird eine kompakte RNA-Struktur stabilisiert, die neben zahlreichen komplexen Tertiärinteraktionen eine starre Bindungstasche ausbildet, in der der Ligand nach einem „Schlüssel-Schloss-Prinzip“ bindet. Die Ligandbindung zieht nur noch kleinere strukturelle Änderungen nach sich. Mittels der Stopped-Flow-Technik wurden die kinetischen Aspekte der Ligandbindung in Abhängigkeit der Mg2+-Konzentration untersucht. Diese Methode ermöglichte die Analyse der Zusammenhänge zwischen RNA-Faltung und anschließender Komplexbildung in Echtzeit. Die Analyse der Stopped-Flow-Messungen ergab, dass die Geschwindigkeit des Ligandbindungsprozesses wesentlich von der Mg2+-induzierten Strukturausbildung abhängig ist. Die Mg2+-vermittelte globale Organisation der RNA-Struktur ist somit der geschwindigkeitsbestimmende Schritt des Ligandbindungsprozesses. Die RNA-Mg2+-Interaktionen bestimmen also nicht nur die 3D-Struktur des Tetracyclin-bindenden Aptamers, sondern auch die Kinetik des Ligandbindungsprozesses. Der detaillierte Vergleich des Tetracyclin-Aptamers in seiner ligandfreien und ligandgebundenen Form ergab, dass trotz der stark ausgeprägten strukturellen Ähnlichkeit, lediglich die ligandgebundene Form in einer thermisch stabilen Konformation vorliegt. Die signifikante Erhöhung der Thermostabilität durch die Ligandbindung ist die essentielle Voraussetzung für die genregulatorische Funktion des Aptamers. Basierend auf diesen Ergebnissen ist also nicht die Struktur, sondern die strukturelle Stabilität ausschlaggebend für die regulatorische Aktivität des Tetracyclin-bindenden Aptamers. Ein weiterer Teil dieser Arbeit beschäftigt sich mit der Charakterisierung des Bindungsmodus von GTP an die GTP-bindenden Aptamere 9-4, 10-10, Klasse II und Klasse V. Durch den direkten NMR-spektroskopischen Nachweis von Wasserstoffbrückenbindungen konnte eine intermolekulare G:C-Watson-Crick-Basenpaarung zwischen GTP und den GTP-bindenden Aptameren 9-4, 10-10 und Klasse II gezeigt werden. Basierend auf diesen Ergebnissen konnte durch eine C zu U Mutation die Bindungsspezifität des Aptamers Klasse II von GTP zu 2-Amino-ATP verändert werden. Weiterhin konnte im Rahmen dieser Arbeit ein intermolekularer G-Quadruplex als Ligandbindungsmodus zwischen GTP und dem GTP-bindenden Aptamer Klasse V beschrieben werden. Hierbei bildet GTP mit sieben Guanin-Basen der RNA eine intermolekulare G-Quadruplexstruktur, bestehend aus zwei übereinanderliegenden Guanin-Tetraden, aus. Durch den Einsatz von 15N-markiertem NH4+ konnte eine spezifische Kaliumbindungsstelle im Zentrum der Quadruplexstruktur lokalisiert werden, die zur Stabilisierung des RNA-Ligand-Komplexes dient. Die beobachteten NOE-Kreuzsignale zwischen den Protonen des gebundenen NH4+ und den Protonen der RNA bestätigten dabei die Ausbildung eines intermolekularen G-Quadruplexes. Zusätzlich ergab die Analyse der NMR-Spektren, dass die G-Quadruplexstruktur erst im Zuge der Ligandbindung ausgebildet wird. Die Bildung eines G-Quadruplexes, in der der Ligand einen integralen Bestandteil der Quadruplexstruktur darstellt, ist ein bislang unbeschriebener Bindungsmechanismus.

Download full text files

  • Dissertation_Amir_H_Nasiri.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Amir Hossein Nasiri
URN:urn:nbn:de:hebis:30:3-447242
Referee:Jens WöhnertORCiDGND, Beatrix SüßGND
Advisor:Jens Wöhnert
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/10/23
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/05/23
Release Date:2017/10/23
Page Number:123
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:419497536
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG