Activation of the unfolded protein response sensor Ire1 by lipid bilayer stress

  • The composition of cellular membranes is extremely complex and the mechanisms underlying their homeostasis are poorly understood. Organelles within a eukaryotic cell require a non-random distribution of membrane lipids and a tight regulation of the membrane lipid composition is a prerequisite for the maintenance of specific organellar functions. Physical membrane properties such as bilayer thickness, lipid packing density and surface charge are governed by the lipid composition and change gradually from the early to the late secretory pathway. As the endoplasmic reticulum (ER) is situated at the beginning of the cells secretory pathway, it has to accept and accommodate a great variety and quantity of secretory and transmembrane proteins, which enter the ER on their way to their final cellular destination. Secretory proteins can be translocated into the lumen of the ER co- or posttanslationally and membrane proteins are being inserted and released into the ER membrane. In the oxidative milieu of the ER-lumen, supported by a variety of chaperones, proteins can fold into their native form. If the folding capacity of the ER-lumen is exceeded, an accumulation of mis- or unfolded proteins in the lumen of the ER occurs, consequently triggering the unfolded protein response (UPR). This highly conserved program activates a wide-spread transcriptional response to restore protein folding homeostasis. In fact, 7 – 8% of all genes in the yeast Saccharomyces cerevisiae (S. cerevisiae) are regulated by the UPR. The mechanism underlying the activation of the UPR by protein folding stress has been investigated thoroughly in the last decades and many of its mechanistic details have been elucidated. Recently, it became evident that aberrant lipid compositions of the ER membrane, collectively referred to as lipid bilayer stress, are equally potent in activating the UPR. The underlying molecular mechanism of this membrane-activated UPR, however, remained unclear. This study focuses on the UPR in S. cerevisiae and characterizes the inositol requiring enzyme 1 (Ire1) as the sole UPR sensor in S. cerevisiae. Active Ire1 forms oligomers and, collaboratively with the tRNA ligase Rlg1, splices immature mRNA of the transcription factor HAC1, which results in the synthesis of mature HAC1 mRNA and the production of the active Hac1 protein, which binds to UPR-elements in the nucleus and activates the expression of UPR target genes. Here, the combination of in vivo and in vitro experiments is being used, which is supplemented by molecular dynamics (MD) simulations performed by Roberto Covino and Gerhard Hummer (MPI for Biophysics, Frankfurt), aiming to identify the molecular mechanism of Ire1 activation by lipid bilayer stress. This study focuses on the analysis of the juxta- and transmembrane region of Ire1. Bioinformatic analyses revealed a putative ER-lumenal amphipathic helix (AH) N-terminally of and partially overlapping with the transmembrane helix (TMH). This predicted AH contains a large hydrophobic face, which inserts into the ER membrane, forcing the TMH into a tilted orientation within the membrane. The resulting unusual architecture of Ire1’s AH and TMH constitutes a unique structural element required for the activation of Ire1 by lipid bilayer stress. To investigate the function of the AH in the physiological context, different variants of Ire1 were produced under the control of their endogenous promoter and from their endogenous locus. The functional role of the AH was tested, by disrupting its amphipathic character by the introduction of charged residues into the hydrophobic face of the AH. The role of a conserved negative residue between the TMH and the AH (E540 in S. cerevisiae) was tested by substituting it by a unipolar, polar, or positively charged residue. These variants were intensively characterized using a series of assays: This thesis provides evidence that the AH is crucial for the function of Ire1: Mutant variants with a disrupted (F531R, V535R) or otherwise modified AH (E540A) exhibited a lower degree of oligomerization and failed to catalyze the splicing of the HAC1 mRNA as the Wildtype control. Likewise, the induction of PDI1, a target gene of the UPR, was greatly reduced in mutants with a disrupted or defective AH. These data revealed an important functional role of the AH for normal Ire1 function. An in vitro system was established to analyze the membrane-mediated oligomerization of Ire1. This system enabled the isolated functional analysis of the AH and TMH during Ire1 activation by lipid bilayer stress. A fusion construct, coding for the maltose binding protein (MBP) from Escherichia coli (E. coli), N-terminally to the AH and TMH of Ire1 was produced. The heterologous production in E. coli, the purification and reconstitution of this minimal sensor of Ire1 in liposomes was established as part of this study. To analyze the oligomeric status of the minimal sensor in different lipid environments, continuous wave electron paramagnetic resonance (cwEPR) spectroscopic experiments were performed. These experiments revealed that the molecular packing density of the lipids had a significant influence of the oligomerization of the spin-labeled membrane sensor: increasing packing densities resulted in sensor oligomerization. The AH-disruptive F531R mutant, in which the amphipathic character of the AH was destroyed, showed no membrane-sensitive changes in its oligomerization status. Thus, the activation of Ire1 by lipid bilayer stress is achieved by a membrane-based mechanism. According to the current model, the AH induces a local membrane compression by inserting its large hydrophobic face into the membrane. As membrane thickness and acyl chain order are interconnected, this compression simultaneously results in an increased local disordering of lipid acyl chains. Supporting MD simulations performed by Roberto Covino and Gerhard Hummer revealed that the bilayer compression is significantly more pronounced in a densely packed lipid environment, than in a lipid environment of lower lipid packing density. Hence, the energetic cost of the local compression increases with the packing density of the membrane, but is compensated for by the oligomerization of Ire1. This minimization of energetic cost induced by the membrane deformation of Ire1 forms the basis for the activation of Ire1 by lipid bilayer stress.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kristina Halbleib
URN:urn:nbn:de:hebis:30:3-456011
Place of publication:Frankfurt am Main
Referee:Robert Ernst, Martin GriningerORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/01/30
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/01/19
Release Date:2018/02/01
Page Number:174
HeBIS-PPN:425363392
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht