The impact of human adipose tissue-derived stem cells on breast cancer cells : implications for cell-assisted lipotransfers in breast reconstruction

  • Background: In this study we evaluated the interactions of human adipose tissue-derived stem cells (ADSCs) and different human breast cancer cell lines (BRCAs) with regard to the safety of cell-assisted lipotransfers for breast reconstruction and a thereby unintended co-localization of ADSCs and BRCAs. Methods: ADSCs were co-cultured with five different human BRCAs (MCF-7, MDA-MB-231, SK-BR-3, ZR-75-30, and EVSA-T) and primary BRCAs from one patient in a transwell system, and cell-cell-interactions were analyzed by assessing doubling time, migration and invasion, angiogenesis, quantitative real-time polymerase chain reaction (PCR) of more than 300 tumor-associated genes, and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs). Results of co-culture were compared to those of the respective monoculture. Results: Quantitative real-time PCR revealed remarkable changes in the expression of multiple tumor-associated genes in co-culture compared to monocultures of both ADSCs and BRCAs. Concomitantly, the concentration of several tumor-associated proteins, such as cytokines and MMPs, were strongly increased in co-culture. Furthermore, exclusively in co-culture with ADSCs, the different BRCAs were exposed to several important tumor-modulating proteins, such as CCL2, HGF, or interleukins. Co-culture did not significantly affect cellular proliferation of either ADSCs or BRCAs (p > 0.05). The migration of MCF-7 and MDA-MB-231 BRCAs was significantly increased in co-culture with ADSCs by a mean of 11% and 23%, respectively (p = 0.04 and 0.012), as well as that of ADSCs in co-culture with MDA-MB-231, ZR-75-30, and EVSA-T (+11–15%, p = 0.035–0.045). Co-culture with MDA-MB-231, SK-BR-3, and EVSA-T BRCAs significantly increased the invasive behavior of ADSCs by a mean of 24–41% (p = 0.014–0.039). There were no significant differences in the in vitro invasive properties of BRCAs in co-culture compared to monoculture. An in vitro angiogenesis assay revealed an increased tube formation of conditioned media from co-cultured BRCAs and ADSCs compared to the respective monocultures. Conclusion: This study further elucidates the possible interactions of primary human ADSCs with human BRCAs, pointing towards a potential increased oncological risk which should not be neglected when considering a clinical use of cell-assisted lipoaspirates in breast reconstruction.
Metadaten
Author:Eva Köllensperger, Lilly-Claire Bonnert, Inka Zörnig, Frederik MarméORCiDGND, Stefanie Sandmann, Günter Germann, Felix Gramley, Uwe Leimer
URN:urn:nbn:de:hebis:30:3-458309
DOI:https://doi.org/10.1186/s13287-017-0579-1
ISSN:1757-6512
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/28545495
Parent Title (English):Stem cell research & therapy
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Language:English
Year of Completion:2017
Date of first Publication:2017/05/25
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/03/13
Tag:Adipose tissue; Breast cancer; Breast reconstruction; Cell-assisted lipotransfer; Mesenchymal stem cells
Volume:8
Issue:1, Art. 121
Page Number:19
First Page:1
Last Page:19
Note:
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
HeBIS-PPN:432095683
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0