Efficient whole cell biocatalyst for formate-based hydrogen production

  • Background: Molecular hydrogen (H2) is an attractive future energy carrier to replace fossil fuels. Biologically and sustainably produced H2 could contribute significantly to the future energy mix. However, biological H2 production methods are faced with multiple barriers including substrate cost, low production rates, and low yields. The C1 compound formate is a promising substrate for biological H2 production, as it can be produced itself from various sources including electrochemical reduction of CO2 or from synthesis gas. Many microbes that can produce H2 from formate have been isolated; however, in most cases H2 production rates cannot compete with other H2 production methods. Results: We established a formate-based H2 production method utilizing the acetogenic bacterium Acetobacterium woodii. This organism can use formate as sole energy and carbon source and possesses a novel enzyme complex, the hydrogen-dependent CO2 reductase that catalyzes oxidation of formate to H2 and CO2. Cell suspensions reached specific formate-dependent H2 production rates of 71 mmol g protein −1 h−1 (30.5 mmol g CDW −1 h−1) and maximum volumetric H2 evolution rates of 79 mmol L−1 h−1. Using growing cells in a two-step closed batch fermentation, specific H2 production rates reached 66 mmol g CDW −1 h−1 with a volumetric H2 evolution rate of 7.9 mmol L−1 h−1. Acetate was the major side product that decreased the H2 yield. We demonstrate that inhibition of the energy metabolism by addition of a sodium ionophore is suitable to completely abolish acetate formation. Under these conditions, yields up to 1 mol H2 per mol formate were achieved. The same ionophore can be used in cultures utilizing formate as specific switch from a growing phase to a H2 production phase. Conclusions: Acetobacterium woodii reached one of the highest formate-dependent specific H2 productivity rates at ambient temperatures reported so far for an organism without genetic modification and converted the substrate exclusively to H2. This makes this organism a very promising candidate for sustainable H2 production and, because of the reversibility of the A. woodii enzyme, also a candidate for reversible H2 storage.

Download full text files

Export metadata

Metadaten
Author:Patrick Kottenhahn, Kai SchuchmannGND, Volker MüllerORCiD
URN:urn:nbn:de:hebis:30:3-465057
DOI:https://doi.org/10.1186/s13068-018-1082-3
ISSN:1754-6834
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/29619089
Parent Title (English):Biotechnology for biofuels
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Language:English
Year of Completion:2018
Date of first Publication:2018/04/02
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/05/22
Tag:Acetobacterium woodii; Biohydrogen; Formate dehydrogenase; Hydrogen production; Hydrogenase
Volume:11
Issue:Art. 93
Page Number:9
First Page:1
Last Page:9
Note:
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
HeBIS-PPN:433866985
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Biowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung 4.0