An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae

  • Background: The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. Results: The previously engineered short-chain acyl-CoA producing yeast Fas1R1834K/Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L−1 in a 72-h fermentation. The additional accumulation of 90 mg L−1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L−1. However, in growth tests concentrations even lower than 50.0 mg L−1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. Conclusions: By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae. Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.

Download full text files

Export metadata

Author:Sandra Henritzi, Manuel Fischer, Martin GriningerORCiDGND, Igor-Mislav OrebORCiDGND, Eckhard Boles
Pubmed Id:
Parent Title (English):Biotechnology for biofuels
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Year of Completion:2018
Date of first Publication:2018/06/01
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/06/14
Tag:1-octanol; Biofuel; Caprylic acid; Carboxylic acid reductase; Fatty acid synthase; Fatty alcohol; Octanoic acid; Saccharomyces cerevisiae; Short-chain fatty acids; Yeast
Issue:Art. 150
Page Number:12
First Page:1
Last Page:12
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Biowissenschaften / Biowissenschaften
Exzellenzcluster / Exzellenzcluster Makromolekulare Komplexe
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoCreative Commons - Namensnennung 4.0