Zeitaufgelöste spektroskopische Untersuchungen zur Aufklärung der Photoreaktionen mikrobieller Rhodopsine

  • Gegenstand der vorliegenden Arbeit sind die Untersuchungen lichtgesteuerter Reaktionen der zwei Retinalproteine Channelrhodopsin-2 (ChR-2) und Proteorhodopsin (PR) mit Hilfe zeitaufgelöster Laserspektroskopie. Da der Mechanismus der Kanalöffnung des ChR-2 bis heute nicht vollständig aufgeklärt werden konnte, beschäftigt sich diese Arbeit insbesondere mit den Prozessen, die direkt nach der Photoanregung des Retinals stattfinden und die Kanalöffnung vorbereiten. Es wurde dabei gezielt auf für die Funktion des Proteins wichtige Faktoren wie strukturelle Besonderheiten des Chromophors und seiner Umgebung eingegangen und deren Auswirkung auf die Dynamik der Photoreaktionen sowie die Veränderungen im Protein nach der Anregung untersucht. Zunächst wurden die Ergebnisse der vis-pump-IR-probe-Experimente an ChR-2 im Bereich der Carbonylschwingungsbanden protonierter Glutamat- und Aspartat-Reste dargestellt. Dabei wurde insbesondere die Bildungsdynamik der Differenzbanden in diesem Spektralbereich untersucht und in Anlehnung an die vorhandene Literatur eine Bandenzuordnung der für die Funktion des Proteins wichtigen Aminosäurereste vorgenommen. Aus den Messergebnissen konnte geschlossen werden, dass die mit der Kanalöffnung einhergehenden Konformationsänderungen in ChR-2 durch eine effektive Aufnahme der Überschussenergie durch das Protein auf einer sub-Pikosekunden-Zeitskala vorbereitet werden. Des Weiteren wurden spektroskopische Untersuchungen an der R120H-Mutante des ChR-2 vorgestellt. Da diese Mutante bei elektrophysiologischen Messungen keine Kanalaktivität zeigte, sollte zunächst geklärt werden, ob die Mutation einen Einfluss auf die Retinalisomerisierung und den nachfolgenden Photozyklus hat. Dabei stellte sich heraus, dass die Retinalisomerisierung bei der R120H-Mutante zwar im Vergleich zum Wildtyp etwas verzögert stattfindet, der Einfluss der Punktmutation auf den weiteren Photozyklus jedoch insgesamt gering ist. Mit Hilfe der Kurzzeit-IR-Spektroskopie im Bereich der Amid I-Schwingung des Proteinrückgrats konnten für die Mutante allerdings signifikante Veränderungen der Bildungsdynamik sowie eine deutliche Abnahme der Amplitude des Amid I-Signals detektiert werden. Anhand weiterer Experimente an den Mutanten E123T und D253N in diesem Spektralbereich konnte anschließend ein Zusammenhang zwischen der Intensität der Amid I-Bande und der Kanalaktivität von ChR-2 festgestellt werden. Diese Ergebnisse ließen somit die Schlussfolgerung zu, dass die Aminosäurereste R120 und D253 eine entscheidende Rolle beim schnellen Transfer der Überschussenergie an das Protein nach der Retinalanregung und der so initiierten Kanalöffnung spielen. Zusätzlich wurde der Frage nachgegangen, inwieweit Veränderungen am Chromophor die Isomerisierungsreaktion, den nachfolgenden Photozyklus sowie die Funktion des ChR-2 als Ionenkanal beeinflussen können. Zu diesem Zweck wurden spektroskopische Untersuchungen an einem mit 9-12-Phenylretinal (PheRet) rekonstituierten ChR-2 vorgestellt. Es konnte gezeigt werden, dass die Isomerisierung des PheRet zu seiner 13-cis-Form in ChR-2 stark verlangsamt ist und verglichen mit dem nicht modifizierten Chromophor deutlich ineffizienter abläuft. Es wurde außerdem festgestellt, dass die Veränderungen am Retinal zu deutlichen Beeinträchtigungen des Photozyklus führen. Zum einen wurde ein sehr schneller Zerfall des ersten Photoprodukts sowie die Bildung eines zusätzlichen, blauverschobenen Px-Zustands detektiert. Außerdem wurde festgestellt, dass nach der Deprotonierung des isomerisierten PheRet der Großteil der modifizierten Retinale in den Ausgangszustand zurückkehrt und der P3-Zustand nur in geringen Mengen gebildet wird. Die Messergebnisse führten somit zu der Schlussfolgerung, dass die all-trans-Konformation des PheRet in ChR-2 deutlich bevorzugt wird. Da elektrophysiologische Untersuchungen des Retinal-Analogons jodach keine signifikanten Verminderungen der Photoströme im Vergleich zum ATR in ChR-2 zeigten, ließ sich schließlich festhalten, dass die vorgenommenen Veränderungen am Chromophor, die zu einer deutlichen Hemmung der Isomerisierungsreaktion führen und einen starken Einfluss auf den nachfolgenden Photozyklus haben, nicht ausreichend sind, um die Kanalaktivität von ChR-2 komplett zu blockieren, solange noch ein kleiner Anteil der Retinale isomerisieren kann. Der abschließende Teil der Arbeit beschäftigt sich mit der Absorption des UV-Lichts durch das Retinal mit deprotonierter Schiff-Base im grünabsorbierenden Proteorhodopsin, welches in einem alkalischen Medium im Dunkelzustand akkumuliert werden kann. Die Untersuchungen der Primärreaktion zeigten einen langsamen biexponentiellen Zerfall des angeregten Zustands der UV-absorbierenden Spezies mit anschließender Bildung des 13-cis-Photoprodukts. Aufgrund dieser Ergebnisse konnte ein Reaktionsmodell für die ersten Prozesse nach der UV-Anregung des Retinals im GPR aufgestellt werden, welches möglicherweise für weitere UV-Rezeptoren genutzt werden kann.

Download full text files

Export metadata

Metadaten
Author:Elena Bühl
URN:urn:nbn:de:hebis:30:3-466960
Place of publication:Frankfurt am Main
Referee:Josef WachtveitlORCiDGND, Clemens Glaubitz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/06/12
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/06/06
Release Date:2018/06/14
Page Number:xii, 127
HeBIS-PPN:432570551
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht