Regulation of the cellular response to elevated temperatures by heat stress transcription factor HsfA7 in "Solanum lycopersicum"

  • Heat stress transcription factors (Hsfs) are required for transcriptional changes during heat stress (HS) thereby playing a crucial role in the heat stress response (HSR). The target genes of Hsfs include heat shock proteins (Hsps), other Hsfs and genes involved in protection of the cell from irreversible damages due to exposure to elevated temperatures. Among 27 Hsfs in Solanum lycopersicum, HsfA1a, HsfA2 and HsfB1 constitute a functional triad which regulates important aspects of the HSR. HsfA1a is constitutively expressed and described as the master regulator of stress response and thermotolerance. Activation of HsfA1a under elevated temperatures leads to the induction of HsfA2 and HsfB1 which further stimulate the transcription of HS-responsive genes by forming highly active complexes with HsfA1a. Despite the well-established role of these three Hsfs in tomato HSR, information about functional relevance of other Hsfs is currently missing. The heat stress inducible HsfA7 belongs alongside with HsfA2 to a phylogenetically distinct clade. Thereby the two proteins share high homology and a functional redundancy has been assumed. However, HsfA7 function and contribution to stress responses have not been investigated into detail in any plant species. Tomato HsfA7 protein accumulates already at moderately elevated temperatures (~35°C) while HsfA2 becomes dominant at higher temperatures (>40°C). HsfA7 pre-mRNA undergoes complex and temperature-dependent alternative splicing resulting in several transcripts that encode for three protein isoforms. HsfA7-I contains a functional nuclear export signal (NES) and shows nucleocytoplasmic shuttling while HsfA7-II and HsfA7-III have a truncated NES which leads to the strong nuclear retention of the protein. Differences in the nucleocytoplasmic equilibrium have a major impact on the stability of protein isoforms, as nuclear retention is associated with increased protein turnover. Consequently, HsfA7-I shows a higher stability and can be detected even after 24 hours of stress attenuation, while HsfA7-II is rapidly degraded. The degradation of these factors is mediated by the ubiquitin-proteasome pathway. HsfA7 can physically interact with HsfA1a and HsfA3 and form co-activator (“superactivator”) complexes with a very high transcriptional activity as shown on different HS-inducible promoters. In order for the complex to be successfully transferred to the nucleus and confer its activity it needs a functional nuclear localization signal (NLS) of HsfA7. In contrast, the activator (AHA) motif of HsfA7 is not essential for its co-activator function. Interestingly, while interaction of HsfA7 with either HsfA3 or HsfA1a stabilizes HsfA7 isoforms, concomitantly this leads to an increased turnover of HsfA1a and HsfA3. In contrast, HsfA2 has a stabilizing effect on the master regulator HsfA1a. Thus, HsfA7 knockout mutants generated by CRISPR/Cas9 gene editing, show increased HsfA1a levels and a stronger induction of HS-related genes at 35°C compared to wild-type plants and HsfA2 knockout mutants. Consequently, HsfA7 knockout seedlings exhibit increased thermotolerance as shown by the enhanced hypocotyl elongation under a prolonged mild stress treatment at 35°C. In summary, these results highlight the importance of HsfA7 in regulation of cellular responses at elevated temperatures. Under moderately elevated temperatures, the accumulation of HsfA7 and its subsequent interaction with HsfA1a, leads to increased turnover of the latter, thereby ensuring a milder transcriptional activation of temperature-responsive genes like Hsps. In turn, in response to further elevated temperatures, HsfA2 becomes the dominant stress-induced Hsf. HsfA2 forms co-activator complexes with HsfA1a which in contrast to HsfA7, allows the stabilization of the master regulator, leading to the stronger expression of HS-responsive genes required for survival. Thereby, this study uncovers a new regulatory mechanism, where the temperature-dependent competitive interaction of HsfA2 and HsfA7 with HsfA1a control the fate of the master regulator and consequently the activity of temperature-responsive networks.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Anida Mesihovic
Place of publication:Frankfurt am Main
Referee:Enrico SchleiffORCiDGND, Michaela Müller-McNicollORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2018/12/07
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/07/31
Release Date:2018/08/16
Page Number:III, 117
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht