Bayesian network analysis reveals MTHFD2 as a key driver of oxidized phospholipid induced amino acid reprogramming

  • In der vorliegenden Arbeit wurde ein integrativer Netzwerkmodellierungsansatz gewählt, um die Rolle des Endothels im Kontext der Arteriosklerose zu untersuchen. Hierbei wurden bioinformatische Analysen, laborexperimentelle Versuche und klinische Daten vereinigt und aus dieser Synthese neue klinisch relevante Gene identifiziert und beschrieben. Das Endothel trägt maßgeblich zur Homöostase des vaskulären Systems bei und eine Dysfunktion des Endothels fördert die Entstehung der Arteriosklerose. Im Zuge der Atherogenese entstehen vermehrt reaktive Sauerstoffspezies, die Lipide in der Membran von Plasma-Lipoprotein-Partikeln und in der zellulären Plasmamembran oxidieren. Eine Gruppe solcher oxidierter Membranlipide ist oxPAPC, das in erhöhter Konzentration in arteriosklerotischen Plaques und lokal an Orten chronischer Entzündung im vaskulären System vorkommt. Weitherhin findet sich diese Gruppe von oxidierten Phospholipiden in oxidierten LDL-Partikeln, in denen oxPAPC die Bindung an Makrophagen vermittelt und hierdurch maßgeblich zur Bildung der Schaumzellen und damit zum arteriosklerotischen Prozess beiträgt. Die durch oxPAPC verursachte Veränderung der Endothelzelle ist bisher wenig erforscht. Es ist jedoch bekannt, dass oxPAPC die Transkriptionslandschaft in Endothelzellen tiefgreifend verändert. Um der Komplexität der Endothelzellveränderung gerecht zu werden, wurde ein bayesscher Ansatz angewendet. In einem ersten Schritt wurden Expressionsprofile von humanen Aortenendothelzellen (HAEC) aus 147 Herztransplantatspendern verwendet. Diese Expressionprofile enthalten Transkriptionsinformationen der 147 HAEC, die mit oxPAPC oder Kontrollmedium behandelt worden waren. Es wurden signifikant koexprimierte Gene identifiziert und hiervon Gen-Paare berechnet, die einen differentiellen Vernetzungsgrad zwischen Kontroll- and oxPAPC-Status aufweisen. Dieses Netzwerkmodell gibt darüber Aufschluss, welche Gene miteinander in Verbindung stehen. 26759 Gene-Paare, die differentiell verbunden und signifkant koexprimiert waren, wurden hierarchisch gruppiert. Es wurden neun Gen-Gruppen mit einer erhöhten und elf Gen-Gruppen mit einer verminderten Konnektivität nach oxPAPC identifiziert. Gruppe 6 der erhöhten Konnektvitäts-Gruppen wies hierbei die höchste kohärente Konnektivität von allen Gruppen auf. Eine Analyse signifikant überrepräsentierter kanonischer Gensätze ergab, dass diese Gruppe insbesondere Serin-Glycin-Aminosäuremetabolismus, tRNA- und mTOR-Aktivierung wiederspiegelte. Der hier gewählte Netzwerkmodellierungsansatz zeigte auf, dass der Aminosäuremetabolismus durch oxidizerte Phospholipide massiven Veränderungen unterworfen ist. Um den Mechanismus der Veränderung des Aminosäuremetabolismus näher zu untersuchen, wurden bayessche Netzwerkmodelle verwendet. Dieses Netzwerkmodell enthält im Gegensatz zum differentiellen Koexpresssionsmodell gerichtete Informationen innerhalb des Netzwerkgraphes. Die Gen-Gen Verbindungen sind kausal, wodurch sich eine Hierarchie bildet und Schlüsselfaktoren innerhalb des Netzwerks bestimmt werden können. Durch die Integrierung von Expressionsprofilen und Genomprofilen derselben HAEC-Kohorte und der Inferenz von kausalen Gen-Gen-Verbindungen ergaben sich zwei bayessche Netze: Kontroll- und oxPAPC-Netzwerk. Permutationsuntersuchungen und systematische Beurteilung im Vergleich zu Gen-Gen-Verbindungen in Online-Datenbanken zeigten eine erhöhte Prognosefähigkeit der beiden HAEC bayesschen Netze. Es wurden die Schlüsselfaktoren und deren Teilnetzwerke berechnet und auf biologische Wege hin untersucht. Hierbei wurde das mitochondriale Protein MTHFD2 als ein Schlüsselfaktor für ein Teilnetzwerk des oxPAPC bayesschen Netzes identifiziert. Dieses Teilnetz zeigte eine ähnliche Gensatzanreicherung wie GOC-AA und überlappte mit diesem signifikant. ...

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Juliane Hitzel
URN:urn:nbn:de:hebis:30:3-474079
Place of publication:Frankfurt am Main
Referee:Eric R. GeertsmaORCiD, Jianhui Zhu
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/09/04
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/08/06
Release Date:2018/09/06
Page Number:135
HeBIS-PPN:435974963
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht