On bandit learning and pricing in markets

  • A lot of software systems today need to make real-time decisions to optimize an objective of interest. This could be maximizing the click-through rate of an ad displayed on a web page or profit for an online trading software. The performance of these systems is crucial for the parties involved. Although great progress has been made over the years in understanding such online systems and devising efficient algorithms, a fine-grained analysis and problem specific solutions are often missing. This dissertation focuses on two such specific problems: bandit learning and pricing in gross-substitutes markets. Bandit learning problems are a prominent class of sequential learning problems with several real-world applications. The classical algorithms proposed for these problems, although optimal in a theoretical sense often tend to overlook model-specific proper- ties. With this as our motivation, we explore several sequential learning models and give efficient algorithms for them. Our approaches, inspired by several classical works, incorporate the model-specific properties to derive better performance bounds. The second part of the thesis investigates an important class of price update strategies in static markets. Specifically, we investigate the effectiveness of these strategies in terms of the total revenue generated by the sellers and the convergence of the resulting dynamics to market equilibrium. We further extend this study to a class of dynamic markets. Interestingly, in contrast to most prior works on this topic, we demonstrate that these price update dynamics may be interpreted as resulting from revenue optimizing actions of the sellers. No such interpretation was known previously. As a part of this investigation, we also study some specialized forms of no-regret dynamics and prediction techniques for supply estimation. These approaches based on learning algorithms are shown to be particularly effective in dynamic markets.

Download full text files

Export metadata

Metadaten
Author:Paresh Nakhe
URN:urn:nbn:de:hebis:30:3-474260
Place of publication:Frankfurt am Main
Referee:Martin HoeferORCiDGND, Georg Schnitger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/09/07
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/08/13
Release Date:2018/09/20
Page Number:xvii, 118
HeBIS-PPN:436910594
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht