Determination of helix orientations in highly flexible DNA molecules

  • Pulsed electron-electron double resonance (PELDOR), also called Double Electron-Electron Resonance, (DEER) is a pulsed EPR technique that can provide structural information of biomolecules, such as proteins or nucleic acids, complementary to other structure determination methods by measuring long distances (from 1.5 up to 10 nm) between two paramagnetic labels. Incorporation of the rigid Ç-label pairwise into DNA or RNA molecules enables the determination not only of the distance but also of the mutual orientation between the two Ç-labels by multi-frequency orientation-selective PELDOR data (X-, Q- and G-band frequencies). Thus, information about the orientation of secondary structure elements of nucleic acids can be revealed and used as additional angular information for structure determination. Since Ç does not have motion independent from the helix where it resides, the conformational flexibility of the nucleic acid molecule can be directly determined. This thesis demonstrates the advancement of PELDOR spectroscopy, beyond its original scope of distance measurements, to determine the mutual orientation between two rigid spin labels towards the characterization of the conformational space sampled by highly flexible nucleic acid molecules. Applications of the methodology are shown on two systems: a three-way junction, namely a cocaine aptamer in its bound-state, and a two-way junction, namely a bent DNA. More in detail, the conformational changes of the cocaine aptamer upon cocaine binding were investigated by analysis of the distance distributions. The cocaine-bound and the unbound states could be differentiated by their conformational flexibility, which decreases in the presence of the ligand. Moreover, the obtained distance distributions revealed a small change in the mean distance between the two spin labels upon cocaine binding. This indicates a ligand-induced conformational change, which presumably originates at the junction where cocaine is known to bind. The investigation of the relative orientation between the two spin-labeled helices of the aptamer revealed further structural insights into the conformational dynamics of the cocaine-bound state. The angular information from the orientation-selective PELDOR data and the a priori knowledge about the secondary structure of the aptamer were helpful in obtaining a molecular model describing its global folding and flexibility. In spite of a large flexible aptamer, the kink angle between the Ç-labeled helices was found to be rather well-defined. As for the bent DNA molecule, a two-step protocol was proposed to investigate the conformational flexibility. In the first step, a database with all the possible conformers was created, using available restraints from NMR and distance restraints derived from PELDOR. In a second step, a weighted ensemble of these conformers fitting the multi-frequency PELDOR data was built. The uniqueness of the obtained structural ensemble was checked by validation against an independent PELDOR data set recorded at a higher magnetic field strength. In addition, the kink and twist angle pairs were determined and the resulting structural ensemble was compared with the conformational space deduced both from FRET experiments and from the structure determined by the NMR restraints alone. Overall, this thesis underlines the potential of using PELDOR spectroscopy combined with rigid spin labels in the context of structure determination of nucleic acids in order to determine the relative orientation between two helices, the conformational flexibility and the conformational changes of nucleic acid molecules upon ligand binding.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Claudia Maria Grytz
Place of publication:Frankfurt am Main
Referee:Thomas F. Prisner, Peter Güntert
Document Type:Doctoral Thesis
Date of Publication (online):2018/09/30
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/05/25
Release Date:2018/10/18
Page Number:vi, 132
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht