Biochemical investigation of cation selectivity of the "Ilyobacter tartaricus" Na+-ATP synthase rotor ring

  • Die membranintegrierten, rotierenden F-Typ ATP-Synthasen zählen zu den essentiellen Komponenten der bakteriellen Energieversorgung. Ihre Rolle im zellulären Energiehaushalt bestehtin der Synthese von ATP unter Nutzung des transmembranen, elektrischen Ionengradienten (Mitchell 1961, Duncan et al. 1995, Noji et al. 1997, Kinosita et al. 1998). Die rotierenden ATP-Synthasen werden entsprechend der Kationenselektivität, die sie unter physiologischen Bedingungen zeigen, in zwei verschiedene Klassen eingeteilt, die H+-selektiven, sowiedie Na+-selektiven ATP-Synthasen. Hierbei bildet die Selektivität beider Klassen für einwertige Kationen (H+ oder Na+) eine essenzielle Grundlage für ihre Rolle im Energiehaushalt der bakteriellen Zellen. Jedoch gibt es nur eine begrenzte Anzahl von anaeroben Eubakterien und Archaeen, die noch einen auf Na+- Ionen basierenden Energiehaushalt besitzen. Gut charakterisierte Beispiele für Na+-selektive ATP-Synthasen bilden die F-Typ-Synthasen von I. tartaricus, P. modestum, sowie die V/A-Typ-Enzyme von E. hirae und A. woodii. Trotz der Unterschiede in der Kationenselektivitätder unterschiedlichen F-Typ ATP-Synthasen sind sie jedoch sowohl inihre Organisation, als auch hinsichtlich ihre Wirkungsweisen ähnlich. Das Ziel, der im Rahmen dieser Arbeit durchgeführten Forschung, bestand in der Identifizierung der Faktoren, die sowohl die hohen Selektivität, als auch die Affinität des in der Membran-eingebetteten Rotor-C-Rings der ATP-Synthasezu Protonen (H+) und Na+- Ionen beeinflussen. Die Untersuchungen wurden hierbei andem c11-Ring der F-Typ-ATP-Synthase aus dem anaeroben Bakterium Ilyobacter tartaricus durchgeführt, das hierbei als Modellsystem diente. Der untersuchte Ring zeigt unter physiologischen Bedingungen eine hohe Bindungsselektivität für Na+ Ionen, kann jedoch unter nicht-physiologischen Bedingungen auch Li+ und H+ Ionen binden und zur ATP-Synthese verwenden (Neumann et al. 1998). Das Ziel, der im Rahmen dieser Arbeit durchgeführten Forschung, bestand in der Identifizierung der Faktoren, die sowohl die hohen Selektivität, als auch die Affinität des in der Membran-eingebetteten Rotor-C-Rings der ATP-Synthasezu Protonen (H+) und Na+- Ionen beeinflussen. Die Untersuchungen wurden hierbei andem c11-Ring der F-Typ-ATP-Synthase aus dem anaeroben Bakterium Ilyobacter tartaricus durchgeführt, das hierbei als Modellsystem diente. Der untersuchte Ring zeigt unter physiologischen Bedingungen eine hohe Bindungsselektivität für Na+ Ionen, kann jedoch unter nicht-physiologischen Bedingungen auch Li+ und H+ Ionen binden und zur ATP-Synthese verwenden (Neumann et al. 1998). Die Kd- und KM-Werte wurden verwendet, um die Na+ -Bindungsaffinität der C-Ringe bzw. ATP-Synthasen zu quantifizieren. Über die Selektivität wurdebeschrieben, welche Kationen an die C-Ringe und ATP-Synthasen binden können (z. B. H+/Na+/Li+, H+/Na+ - oder nur H+ Ionen).Das Verhältnis der absoluten Bindungsaffinitäten zwischen zwei Kationen (z. B. Kd (Na+)/Kd (H+)) wurde verwendet, um die Präferenz des Enzyms für eines der Ionen zu quantifizieren. Die Faktoren, dieder Kationenselektivität und der Affinität des I. tartaricus c-Rings zugrunde liegen, wurden mit Hilfe von Mutageneseexperimenten der Aminosäuren in der Ionenbindungsstelle untersucht. Im I. tartaricus-c-Ring erfolgt die Na+ Bindung an der Grenzfläche von zwei benachbarten c-Untereinheiten des c-Rings. An der Bindung der Na+-Ionen sind sowohl Aminosäuren aus Helix 1 (Gln32), sowie von Helix 2 (Val63, Ser66, Thr67 und Tyr70) beteiligt, die in der Nähe, des für den Mechanismusessentiellen Glu65 liegen. Insgesamt wurden 19 verschiedene, spezifische Einzel- und Doppelmutationen in die Sequenz des atpE-Gens eingeführt, die für die I. tarticus-ATP-Synthase-c-Untereinheit kodiert. Bei den Experimenten mit dem I. tartaricus c-Ring (Ser66, Thr67 und Tyr70) wurden drei polare Reste der Ionenbindungsstelle durch die polaren Reste (Ser67, Ile67 oder Leu67) oder hydrophobe Reste (Ala66, Gln67 und Phe70) ersetzt, während das geladene Glu65 durch die kürzere, aber immer noch geladene Seitenkette Asp65 ausgetauscht wurde. Zur Charakterisierung der monovalenten Kationenbindung durch die Wildtyp, sowie die mutierten C-Ringe von I.-tartaricus, wurde ein Ansatz verwendet, der biochemische (DCCD-Ionen-Kompetitionsassay) und biophysikalische (ITC) Methoden kombiniert. Die Daten der in dieser Arbeit durchgeführten Experimente, zeigen, dass c-Ringe selektiv für H+ sind, solange in der Ionenbindungsstelle des c-Rings ein ionisierbarer Glu/Asp-Rest vorhanden ist. Die H+-Bindungsaffinität des c-Rings hängt von der Hydrophobizität der Reste ab, aus der die Ionenbindungsstelle aufgebaut ist.Jedoch ist die Zahl der Faktoren, die die Na+-Selektivität des C-Rings bestimmen, weitaus größer. Von den in dieser Arbeit untersuchten Faktoren war die Zahl der polaren Reste, die Wasserstoffbrücken zu Na+ bilden, die Co-Koordination von Na+ durch strukturell vorhandene Wassermoleküle und die Anwesenheit von negativ geladenen Resten besonders wichtig für die Bindung der Na+-Ionen an den Ring. Die hohe Bindungsaffinität des c-Rings für Na+-Ionen, wird sowohl durch Wechselwirkungen begünstigt die das gebundene Na+-Ion stabilisieren, als auch den gesamten atomaren Aufbau der Ionenbindestelle, der die enthalpiegetriebene Na+-Bindungan den c-Ring begünstigen. Im Rahmen dieser eingehenden Studien konnten zum ersten Mal die thermodynamischen Eigenschaften aufgeklärt werden, die der hohen Na+-Bindungsaffinität des c-Rings zugrunde liegen, sowie der Einfluss von Mutationen auf diese Parameter ermittelt werden. Durch zahlreiche Experimente mit ATP-Synthasen, die mit mutierten c-Ringen zusammengesetzt wurden, sollte eine Verbindung zwischen Veränderungen der H+- und der Na+-Bindungsaffinitäten und Unterschiede im Betrieb der ATP-Synthase aufgeklärt werden. Die wichtigste Schlussfolgerung, die sich aus dieser Arbeit ableiten lässt, ist, besteht darin, dass sich Na+/H+-selektiven ATP-Synthasen durch den Austausch von 1-2 Aminosäureresten innerhalb der rotierenden c-Ring-Ionenbindungsstelle in ausschließlich H+-selektive, vollfunktionelle ATP-Synthasen umwandeln lassen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ganna KrasnoselskaGND
URN:urn:nbn:de:hebis:30:3-480047
Place of publication:Frankfurt am Main
Referee:Klaas Martinus PosORCiD, Werner KühlbrandtORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/10/29
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/16
Release Date:2018/11/01
Page Number:XXXI, 254
HeBIS-PPN:438429443
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht