Electromagnetic probes in heavy-ion collisions

  • In this thesis we work on the theoretical description of relativistic heavy-ion collisions, focussing on electromagnetic probes. We present mainly four topics: electric conductivity and diffusion properties of the hot plasma and hadronic matter, response of the quark-gluon plasma to external magnetic fields, direct photon production in the quark-gluon plasma and a study about initial and final state effects in small systems. The latter topic aims, i.a., at a better understanding of the initial state, which is crucial for electromagnetic probes. In all research areas we make use of the Boltzmann transport equation, whereby the presented methods provide analytical and numerical solutions. We pay particular attention to the construction of complete leading order photon production processes in numerical transport simulations of the quark-gluon plasma. To begin with, our findings are the complete conserved charge diffusion matrix and electric conductivity. Those properties are important ingredients, e.g., for future simulations of baryon rich collisions. Next, we find that the influence of external magnetic fields to the QGP dynamics is not quantifiable in observables. We present results for a variety of direct photon observables and we can partly explain experimental data. We emphasize the importance of the chemical composition and non-equilibrium nature of the medium to the direct photon puzzle. Lastly, we observe the interesting dynamic behavior of azimuthal correlations in small systems and identify signatures of the initial state in final observables. This will also be of interest for more precise simulations of electromagnetic probes and allows for various future studies.

Download full text files

Export metadata

Author:Moritz Greif
Place of publication:Frankfurt am Main
Referee:Carsten GreinerGND, Hannah ElfnerORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2018/12/17
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/12/14
Release Date:2018/12/20
Page Number:XVIII, 235
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht