Molecular signature of human bone marrow-derived mesenchymal stromal cell subsets

  • In the current study we compared the molecular signature of expanded mesenchymal stromal cells (MSCs) derived from selected CD271+ bone marrow mononuclear cells (CD271-MSCs) and MSCs derived from non-selected bone marrow mononuclear cells by plastic adherence (PA-MSCs). Transcriptome analysis demonstrated for the first time the upregulation of 115 and downregulation of 131 genes in CD271-MSCs. Functional enrichment analysis showed that the upregulated genes in CD271-MSCs are significantly enriched for extracellular matrix (tenascin XB, elastin, ABI family, member 3 (NESH) binding protein, carboxypeptidase Z, laminin alpha 2 and nephroblastoma overexpressed) and cell adhesion (CXCR7, GPNMB, MYBPH, SVEP1, ARHGAP6, TSPEAR, PIK3CG, ABL2 and NCAM1). CD271-MSCs expressed higher gene transcript levels that are involved in early osteogenesis/chondrogenesis/adipogenesis (ZNF145, FKBP5). In addition, increased transcript levels for early and late osteogenesis (DPT, OMD, ID4, CRYAB, SORT1), adipogenesis (CTNNB1, ZEB, LPL, FABP4, PDK4, ACDC), and chondrogenesis (CCN3/NOV, CCN4/WISP1, CCN5/WISP2 and ADAMTS-5) were detected. Interestingly, CD271-MSCs expressed increased levels of hematopoiesis associated genes (CXCL12, FLT3L, IL-3, TPO, KITL). Down-regulated genes in CD271-MSCs were associated with WNT and TGF-beta signaling, and cytokine/chemokine signaling pathways. In addition to their capacity to support hematopoiesis, these results suggest that CD271-MSCs may contain more osteo/chondro progenitors and/or feature a greater differentiation potential.

Download full text files

Export metadata

Author:Selim Kuçi, Zyrafete Kuçi, Richard Schäfer, Gabriele Spohn, Stefan Winter, Matthias Schwab, Emilia Salzmann-Manrique, Thomas KlingebielORCiDGND, Peter BaderORCiDGND
Pubmed Id:
Parent Title (English):Scientific reports
Publisher:Macmillan Publishers Limited, part of Springer Nature
Place of publication:[London]
Document Type:Article
Year of Completion:2019
Date of first Publication:2019/02/11
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/03/21
Tag:Gene expression; Mesenchymal stem cells
Issue:1, Art. 1774
Page Number:10
First Page:1
Last Page:10
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung 4.0