Bioinformatics image analysis reveals cell graphs and community structures in malignant cell populations of classical Hodgkin lymphoma

  • Die digitale Pathologie ist ein neues, aber stetig wachsendes, Feld in der Medizin. Die kontinuierliche Entwicklung von verbesserten digitalen Scannern erlaubt heute das Abscannen von kompletten Gewebeschnitten und Whole Slide Images gewinnen an Bedeutung. Ziel dieser Arbeit ist die Methodenentwicklung zur Analyse von Whole Slide Images des klassischen Hodgkin Lymphoms. Das Hodgkin-Lymphom, oder Morbus Hodgkin, ist eine Tumorerkrankung des Lymphsystems, bei der die monoklonalen Tumorzellen in der Regel von B-Lymphozyten im Vorläuferstadium abstammen. Etwas mehr als 9.000 Hodgkin-Lymphom-Fälle werden jährlich in den USA diagnostiziert. Zwar ist die 5-Jahre-Überlebensrate für Hodgkin-Lymphome mit 85,3 % vergleichsweise hoch, dennoch werden etwa 1.100 Todesfälle pro Jahr in den USA registriert. Auf mikroskopischer Ebene sind die Hodgkin-Reed-Sternberg Zellen (HRS-Zellen) typisch für das klassische Hodgkin Lymphom. HRS-Zellen haben einen oder mehrere Zellkerne, die stark vergrößert sind und eine grobe Chromatinstruktur aufweisen. Immunhistologisch gibt es für HRS-Zellen charakterisierende Marker, so sind HRS-Zellen positiv für den Aktivierungsmarker CD30. Neben der konventionellen Mikroskopie, ermöglichen Scanner das Digitalisieren von ganzen Objektträgern (Whole Slide Image). Whole Slide Images werden bisher wenig in der Routinediagnostik eingesetzt. Ein großer Vorteil von digitalisierten Gewebeschnitten bietet sich bei der computergestützten Analyse. Automatisierte Bildanalyseverfahren wie Zellerkennung können Pathologen bei der Diagnose unterstützen, indem sie umfassende Statistiken zur Anzahl und Verteilung von immungefärbten Zellen bereitstellen. Die untersuchten immunohistologischen Bilder wurden vom Dr. Senckenbergisches Institut für Pathologie des Universitätsklinikums Frankfurt bereit gestellt. Die betrachteten Gewebeschnitte sind gegen CD30 immungefärbt, einem Membranrezeptor, welcher in HRS-Zellen und aktivierten Lymphozyten exprimiert wird. Die Gewebeschnitte wurden mit einem Aperio ScanScope slide scanner digitalisiert und liegen mit einer hohen Auflösung von 0,25 μm pro Pixel vor. Bei den vorliegenden Gewebeschnittgrößen ergeben sich Bilder mit bis zu 90.000 x 90.000 Pixeln. Der untersuchte Bilddatensatz umfasst 35 Bilder von Lymphknotengewebeschnitten der drei Krankheitsbilder: Gemischtzelliges klassisches Hodgkinlymphom, noduläres klassisches Hodgkinlymphom und Lymphadenitis. Die Bildverarbeitungspipeline wurden teils neu implementiert, teils von etablierten Bilderkennungssoftware und -bibliotheken wie CellProfiler und Java Advanced Imaging verwendet. CD30-positive Zellobjekte werden in den Gewebeschnitten automatisiert erkannt und neben der globalen Position im Whole Slide Image weitere Morphologiedeskriptoren berechnet, wie Fläche, Feret-Durchmesser, Exzentrität und Solidität. Die Zellerkennung zeigt mit 84 % eine hohe Präzision und mit 95 % eine sehr gute Sensitivität. Es konnte gezeigt werden, dass in Lymphadenitisfällen im Schnitt deutlich weniger CD30- positive Zellen präsent sind als in klassisches Hodgkinlymphom. Während hier im Schnitt nur rund 3.000 Zellen gefunden wurden, lag der Durchschnitt für das Mischtyp klassisches Hodgkinlymphom bei rund 19.000 CD30 positiven Zellen. Während die CD30-positiven Zellen in Lymphadenitisfällen relativ gleichmäßig verteilt sind, bilden diese in klassischen Hodgkinlymphom-Fällen Zellcluster höherer Dichte. Die berechneten Morphologiedeskriptoren bieten die Möglichkeit die Gewebeschnitte und den Krankheitsverlauf näher zu beschreiben. Zudem sind bisher Größe und Erscheinungsbild der HRS-Zellen hauptsächlich anhand manuell ausgewählter Zellen bestimmt worden. Ein Maß für die Ausdehnung der Zellen ist der maximale Feret-Durchmesser. Bei CD30-Zellen im klassischen Hodgkinlymphom liegt dieser im Durchschnitt bei 20 μm und ist somit deutlich größer als die durchschnittlich gemessenen 15 μm in Lymphadenitis. Es wurde ein graphentheoretischer Ansatz gewählt, um die CD30 positiven Zellen und ihre räumliche Nachbarschaft zu modellieren. In CD30-Zellgraphen von klassischen Hodgkinlymphom-Gewebeschnitten ist der durchschnittliche Knotengrad gegenüber den von Lymphadenitis-Bildern stark erhöht. Der Vergleich mit Zufallsgraphen zeigt, dass die beobachteten Knotengradverteilungen nicht für eine zufällige Verteilung der Zellen im Gewebeschnitt sprechen. Eigenschaften und Verteilung von Communities in CD30-Zellgraphen können hinzugenommen werden, um klassisches Hodgkinlymphom Gewebeschnitte näher zu charakterisieren. Diese Arbeit zeigt, dass die Auswertung von Whole Slide Image unterstützend zur Verbesserung der Diagnose möglich ist. Die mehr als 400.000 automatisch erkannten CD30-positiven Zellobjekte wurden morphologisch beschrieben, und zusammen mit ihrer Position im Gewebeschnitt ist die Betrachtung wichtiger Eigenschaften des klassischen Hodgkinlymphoms realisierbar. Zellgraphen können durch weitere Zelltypen erweitert werden und auf andere Krankheitsbilder angewendet werden.
Metadaten
Author:Hendrik Schäfer
URN:urn:nbn:de:hebis:30:3-491491
Place of publication:Frankfurt am Main
Referee:Ina KochORCiD, Martin-Leo Hansmann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/02/19
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/12/19
Release Date:2019/02/21
Page Number:XIV, 146
HeBIS-PPN:445499338
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht