Quantenchemische Untersuchungen zur baseninduzierten Reaktivität von Silanen

  • Die moderne Hauptgruppenchemie ermöglicht es Siliciumverbindungen in unterschiedlichen Oxidationsstufen und mit ungewöhnlichen Koordinations- umgebungen zu realisieren: Silane, Silylene, Disilene, Disiline und molekularer Sand (SiO2) können soweit stabilisiert werden, dass eine Charakterisierung gelingt. Ein Verständnis für die Eigenschaften und Reaktivitäten dieser Verbindungen eröffnet Perspektiven zur gezielten Synthese verschiedener Siliciumverbindungen. Industriell sind im wesentlichen zwei Substanzklassen interessant: Perchlorierte Silane, die als Vorstufen für die Abscheidung elementaren Siliciums als Halbleitermaterial Verwendung finden und Organo(Chlor)silane, die wichtige Bausteine für den Aufbau von Silikonen und für Hydrosilylierungsreaktionen darstellen. Im Rahmen dieser Dissertationsschrift wurden mittels quantenchemischer Rechnungen Schlüssel-intermediate für den Aufbau solcher Verbindungen identifiziert und durch Einblicke in den Reaktionsmechanismus das Fundament für ein tiefergehendes Verständnis der dynamischen kovalenten Chemie der Oligosilane gelegt. Dies geschah in enger Zusammenarbeit mit den experimentellen Arbeitsgruppen von Prof. Wagner und Prof. Auner. Im ersten Teil dieser Arbeit wurde die Hochtemperatur-Komproportionierungsreaktion von gasförmigem Siliciumtetrachlorid und elementarem Silicium untersucht (Chem. Eur. J. 2017, 23, 12399). In einer Gasphasenreaktion entsteht dabei ein perchloriertes Polysilan (PCS) unbekannter Zusammensetzung. Im Ergebnis konnten wir zeigen, dass PCS eine komplexe Mischung verschiedener molekularer perchlorierter Silane darstellt, von denen lediglich cyc-Si5Cl10 experimentell eindeutig charakterisiert werden kann. Ausgehend von Dichlorsilylen als reaktive Spezies in der Gasphase zeigten DFT-Berechnungen, dass durch Silylendimerisierung, Silyleninsertion und eine Reihe von Isomerisierungsreaktionen der Aufbau cyclischer Perchlorsilane mit unterschiedlichem Silylierungsgrad gegenüber dem entsprechenden Aufbau acyclischer Perchlorsilane aus nicht umgesetzten Siliciumtetrachlorid bevorzugt stattfindet. PCS liefert ein 29Si-NMR- Spektrum mit einer verwirrenden Vielzahl verschiedener Signale, die auch anhand quantenchemisch berechneter 29Si-NMR-chemischer Verschiebungen nicht eindeutig zugeordnet werden konnten. Dennoch war eine Einteilung der berechneten Verschiebungen in Bereiche möglich, in denen Verschiebungen für Siliciumatome cyclischer und acyclischer Perchlorsilane mit einer bestimmten formalen Oxidationsstufe zu erwarten sind. Weiterhin wurde der Chlorid-induzierte Aufbau perchlorierter Silane aus Si2Cl6 untersucht: Der Bildungsmechanismus für die durch Tillmann röntgen- kristallographisch charakterisierten perchlorierten Silikate und dianionischen (silylsubstituierten) Cyclohexasilane wurde in einer DFT-Studie untersucht und Schlüsselintermediate sowie stabile Zwischenstufen identifiziert (Chem. Eur. J. 2014, 20, 9234). Wir konnten zeigen, dass SiCl3– als reaktives Intermediat für die Si–Si Bindungsknüpfung verantwortlich ist. Die experimentell nachgewiesenen Silikate sind, mit einer Ausnahme für die ein anderes Konformer gefunden wurde, identisch mit den theoretisch vorhergesagten lokalen Minima. Sie entstehen durch eine Reihe von reversiblen Additions- und Isomerisierungsreaktionen. Dabei sind die acyclischen Silikate über Gleichgewichtsreaktionen miteinander verknüpft, wobei die berechneten Aktivierungsbarrieren für die Rückreaktion immer etwas höher sind als die Barrieren für den nächsten Aufbauschritt. Im Rahmen dieser Gleichgewichtsreaktionen entsteht nicht nur SiCl3–, sondern es können auch höhere Silanide eliminiert werden, die ab einer Größe von drei Siliciumatomen zu Cyclohexasilanen dimerisieren. Mit der head- to-tail Dimerisierung des bevorzugt gebildeten Silanids erklärt sich zwanglos das Substitutionsmuster aller röntgenkristallographisch charakterisierten zweifach silylsubstituierten Cyclohexasilane. Weiterhin ist es gelungen, den Reaktions- mechanismus für den Chlorid-induzierten Aufbau des dianionischen inversen Sandwichkomplexes [Si6Cl12*2Cl]2– aus HSiCl3 aufzuklären, in dem ebenfalls SiCl3– das Schlüsselintermediat darstellt. Letzteres entsteht durch die Eliminierung von HCl aus dem Chloridaddukt von HSiCl3. Der Reaktionsmechanismus beinhaltet Chlorid- abstraktionen, Hydridabstraktionen, Deprotonierungen, Silanid-Additionen, sowie Silanid-Eliminierungen, die nahezu gleichberechtigt nebeneinander vorkommen. Alle identifizierten Reaktionsschritte münden immer wieder in die Pfade, die bereits für den Aufbau aus Si2Cl6 gefunden wurden. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lioba Meyer
URN:urn:nbn:de:hebis:30:3-492053
Place of publication:Frankfurt am Main
Referee:Norbert AunerGND, Max C. HolthausenORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2019/02/22
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/02/18
Release Date:2019/02/28
Page Number:190
HeBIS-PPN:445683996
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht